Android MVC、MVP架构

本文详细介绍了MVC(Model-View-Controller)架构模式及其在Android开发中的应用,包括模型层、视图层和控制层的具体实现,并提到了MVP模式。

【个人理解,有不正确的地方还请指正】

1、MVC:

1.1  定义:MVC(Model—View—Controller),M--逻辑模型,V--试图模型,C--控制器。典型的观察者设计模式,M和V代码分离,使用Controller则是确保了Model和View保持同步更新。

1.2  优势:MVC是将代码中的逻辑层和界面层分开,在团队开发中不同的开发人员可以按照不同的分工对不同的模块进行开发。

1.3  在Android开发中的具体体现:

1)Model(模型层):对网络、数据库以及计算逻辑等相关耗时操作都放在该层;

2)View(视图层):在Android中具体体现就是布局以及各种控件的绘制描述,以XML的形式存在或在代码中自定义布局/控件的类或包包;

3)Controller(控制层):Activity和Fragment就存放在该层(相关Adapter封装也放在该层),若果涉及到相关的业务逻辑处理直接调用Model层中方法,将耗时操作都放在Model层中做。


2、MVP:



内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估CPO优化流程。; 适合人群:具备一定Python编程基础优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值