用r语言拟合平稳AR序列,并画出自相关图

本文介绍了如何使用r语言构建平稳的AR(Autoregressive)序列,并详细阐述了AR模型的原理,即利用前期的X值线性预测当前期的XT。同时,提到了该模型是线性回归的拓展,但这里的X预测X自身。还提及了VAR向量自回归模型作为AR模型的推广,与金融风险管理中的VAR模型区分开来。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Autoregressive model is a statistical method to deal with time series. It uses the same variable, such as the previous periods of X, that is, X1 to xt-1, to predict the performance of XT in this period, and assumes that they are a linear relationship. Because this is developed from linear regression in regression analysis, but x is not used to predict y, but x is used to predict x (itself); So it’s called autoregression.
在这里插入图片描述
Where: C is a constant term; It is assumed that the mean is equal to 0 and the standard deviation is equal to the random error value of; It is assumed to be constant for any t. The text description is: the expected value of X is equal to the linear combination of one or several late stages, plus constant term and random error.

Vector autoregressive model is a generalization of AR model. This concept should be different from the VAR model of financi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值