library(xgboost)
library(tidyverse)
library(skimr)
library(DataExplorer)
library(caret)
library(pROC)
cPriceData <- read.csv(file.choose())
set.seed(42)
trains <- createDataPartition(
y = cPriceData$price,
p = 0.85,
list = F,
times = 1
)
trains2 <- sample(trains, nrow(cPriceData)*0.7)
valids <- setdiff(trains, trains2)
data_train <- cPriceData[trains2, ]
data_valid <- cPriceData[valids, ]
data_test <- cPriceData[-trains, ]
#训练集
dvfunc <- dummyVars(~., data = data_train[, 1:5], fullRank = T)
data_trainx <- predict(dvfunc, newdata = data_train[, 1:5])
data_trainy <- data_train$price
data_validx <- predict(dvfunc, newdata = data_valid[, 1:5])
data_validy <- data_valid$price
data_testx <- predict(dvfunc, newdata = data_test[, 1:5])
data_testy <- data_test$price
dtrain <- xgb.DMatrix(data = data_trainx, label = data_trainy)
dvalid <- xgb.DMatrix(data = data_validx,
r语言XGBoost
最新推荐文章于 2025-02-12 19:38:48 发布