Nested Dolls
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2464 Accepted Submission(s): 702
Problem Description
Dilworth is the world’s most prominent collector of Russian nested dolls: he literally has thousands of them! You know, the wooden hollow dolls of different sizes of which the smallest doll is contained in the second smallest, and
this doll is in turn contained in the next one and so forth. One day he wonders if there is another way of nesting them so he will end up with fewer nested dolls? After all, that would make his collection even more magnificent! He unpacks each nested doll
and measures the width and height of each contained doll. A doll with width w1 and height h1 will fit in another doll of width w2 and height h2 if and only if w1 < w2 and h1 < h2. Can you help him calculate the smallest number of nested dolls possible to assemble
from his massive list of measurements?
Input
On the first line of input is a single positive integer 1 <= t <= 20 specifying the number of test cases to follow. Each test case begins with a positive integer 1 <= m <= 20000 on a line of itself telling the number of dolls in the
test case. Next follow 2m positive integers w1, h1,w2, h2, . . . ,wm, hm, where wi is the width and hi is the height of doll number i. 1 <= wi, hi <= 10000 for all i.
Output
For each test case there should be one line of output containing the minimum number of nested dolls possible.
Sample Input
4 3 20 30 40 50 30 40 4 20 30 10 10 30 20 40 50 3 10 30 20 20 30 10 4 10 10 20 30 40 50 39 51
Sample Output
1 2 3 2
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define maxn 20005
//author:XXYY
struct node
{
int w,h;
}q[maxn];
bool cmp(node a,node b)
{
if(a.w==b.w)
return a.h<b.h;
return a.w>b.w;
}
int p[maxn];
int main(){
int n,t,m,i,j,x,l,r,max,mid,f;
scanf("%d",&t);
while(t--){
scanf("%d",&m);
for(i=0;i<m;i++)
scanf("%d%d",&q[i].w,&q[i].h);
sort(q,q+m,cmp);
memset(p,0,sizeof(p));
x=0;
max=-1;
for(i=0;i<m;i++){
if(q[i].h>=p[x]){
p[++x]=q[i].h;
f=x;
}
else{
l=0;
r=x-1;
while(l<=r){
mid=(l+r)/2;
if(q[i].h>=p[mid])
l=mid+1;
else
r=mid-1;
}
p[l]=q[i].h;
f=l;
}
if(f>max)
max=f;
}
printf("%d\n",max);
}
return 0;
}
本文探讨了俄罗斯套娃的最优组合问题,旨在通过给定的一系列套娃尺寸找到最少的套娃组合数量。利用排序和动态规划算法,有效地解决了问题,并提供了完整的AC代码实现。
351

被折叠的 条评论
为什么被折叠?



