有一天发现,在腾讯文档中想搜索之前写的东西需要收费了。这钱非花不可吗?好像不用。我们可以利用langchain+chatGLM在本地搭建自己的知识库,除了能搜索到文档这个功能,还能基于知识库内容和你进行对话问答~
本文就介绍如何搭建你的本地知识库问答系统。
1 知识库搭建思路
先抛开技术,假设现在知识库就在手边,我们是如何搜索想要的答案的?
首先,把所有的文档看一遍,对文档进行分类;
然后,找出和问题相关的文档内容;
最后,对相关内容进行总结,得到答案。
其实算法的整体思路也是这些步骤,明显只靠LLM是不够的,我们还需要一些其他功能将LLM应用起来,langchain就提供了一整套框架帮我们更好的应用LLM。
1.1 langchain介绍
https://github.com/hwchase17/langchain
langchain是一个开发基于语言模型应用程序开发框架,链接面向用户程序和LLM之间的中间层。利用LangChain可以轻松管理和语言模型的交互,将多个组件链接在一起,比如各种LLM模型,提示模板,索引,代理等等。
1.2 langchain-ChatGLM流程介绍
langchain-ChatGLM项目就是参考了Langchain的思路,我们一起看下langchain-ChatGLM搭建本地知识库的流程。
https://github.com/imClumsyPanda/langchain-ChatGLM/blob/master/README.md
如上图,本地知识库搭建的流程如下:
(1-2)准备本地知识库文档目前支持 txt、docx、md、pdf 格式文件,使用Unstructured Loader类加载文件,获取文本信息,loader类的使用参考https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/unstructured_file.html
(3-4)对文本进行分割,将大量文本信息切分为chunks
(5)选择一种embedding算法,对文本向量化
(6)将知识库得到的embedding结果保存到数据库,就不用每次应用都进行前面的步骤
(8-9)将问题也用同样的embedding算法,对问题向量化
(10)从数据库中查找和问题向量最相似的N个文本信息
(11)得到和问题相关的上下文文本信息
(12)获取提示模板
(13)得到输入大模型的prompt比如:问题:,通过以下信息汇总得到答案。
(14)将prompt输入到LLM得到答案
以上只是简单的步骤流程,实际应用中每一步都会有遇到很多问题,比如文本格式如何加载;文本如何分割才能尽可能少的不分开紧密相关上下文;embedding算法的选取;关于提问信息的相关上下文的召回和排序问题;提示模板的形式;大模型的选取等等等等。本文只是尝鲜搭建整套流程,所以不探索这些问题。
2 知识库搭建步骤
2.1 硬件需求
首先确定机器性能是否满足要求,仍然使用ChatGLM-6B模型
通过上文介绍,大家应该可以在本地跑通chatGLM-6B模型了。
2.2 环境安装
首先安装后续要用到的相关库
代码语言:javascript
pip install langchain
--chatGLM相关的上一篇已介绍
-- 加载文档
pip install unstructured
-- 解析表格
pip install tabulate
-- 我使用的sentence_transformers进行embedding
pip install sentence_transformers
-- 向量数据库
pip install chromadb
2.3 部署和使用
环境搭建好,就可以直接应用了,上代码~
step1: 加载文档并切分文本
代码语言:javascript
from langchain.document_loaders import UnstructuredFileLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
# 导入文本
loader = UnstructuredFileLoader("./data/test_doc.txt")
# 将文本转成 Document 对象
data = loader.load()
print(f'documents:{len(data)}')
# 初始化加载器
# chunk_size每个分片的最大大小,chunk_overlap分片之间的覆盖大小,可以保持连贯性
text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=0)
# 切割加载的 document
split_docs = text_splitter.split_documents(data)
print("split_docs size:", len(split_docs), type(split_docs))
step2: 对文本embedding,注意在提问时也需要保持embedding方案的一致性
代码语言:javascript
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import IPython
import sentence_transformers
# 选择模型---https://huggingface.co/models?pipeline_tag=sentence-similarity&sort=downloads
embedding_model_dict = {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec": "GanymedeNil/text2vec-large-chinese",
"text2vec2":"uer/sbert-base-chinese-nli",
"text2vec3":"shibing624/text2vec-base-chinese",
}
EMBEDDING_MODEL = "text2vec3"
# 初始化 hugginFace 的 embeddings 对象
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[EMBEDDING_MODEL], )
embeddings.client = sentence_transformers.SentenceTransformer(
embeddings.model_name, device='mps')
print("embeddings", embeddings)
print("embeddings model_name", embeddings.model_name)
step3: 词向量持久化保存到数据库
代码语言:javascript
from langchain.vectorstores import Chroma
# 初始化加载器
db = Chroma.from_documents(split_docs, embeddings, persist_directory="./data/doc_embeding")
# 持久化
db.persist()
step4: 问答应用,首先将持久化后的数据加载,然后将问题向量化,并搜索和问题相关的内容
代码语言:javascript
# 加载之前持久化数据
db = Chroma(persist_directory="./data/doc_embeding", embedding_function=embeddings)
question = "什么是用户画像"
similarDocs = db.similarity_search(question, include_metadata=True, k=4)
info = ""
for similardoc in similarDocs:
info = info + similardoc.page_content
step5: 根据提问,结合上下文进行问答
代码语言:javascript
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
# INT8 量化的模型将"THUDM/chatglm-6b-int4"改为"THUDM/chatglm-6b-int8"
model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True).half().cuda()
model = model.eval()
history = []
question = "结合以下信息:" + info + "回答" + question
response, history = model.chat(tokenizer, question, history=history)
print("\033[31m 提问:{}\033[0m".format(question))
print("\033[32m 回答:{}\033[0m".format(response))
以下是我将用户画像学习笔记作为知识库后,得到的结果,效果。。一般般吧~
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓