快来试试用 Python 将你的照片转化为“速写”


Photo-Sketching 一个能将照片的轮廓识别出来并将其转化为“速写”型图像的开源模块。

比如,这只小狗:

经过模型的转化,会变成卡通版的小狗:

当然,也不是什么照片都处理的好,比如这个风景画就不行:

摇身一变,成了抽象风格:

非常秀,这很人工智能。

这个模块的使用也相对简单,下面给大家带上全方面的教程:

1.虚拟环境及依赖安装


这个项目推荐大家直接用Anaconda进行环境的构建和开发,因为作者提供了一个 environment.yml 文件,你只需要输入以下命令,就能一键安装环境和依赖:

conda env create -f environment.yml

此外,推荐大家用VSCode编辑器来编写像这样的小型Python项目。

2.下载预训练模型

作者已经训练好了一些识别模型方便大家使用,可以在下列地址找到:
https://drive.google.com/file/d/1TQf-LyS8rRDDapdcTnEgWzYJllPgiXdj/view

作者使用的是谷歌硬盘,如果你无法科学上网,可以使用我提供的完整源代码+预训练模型。

「获取方式」

长按扫码回复「sketch」

下载完成后解压文件,将 latest_net_D.pth 和 latest_net_G.pth 放置到 Checkpoints 文件夹下:

3.运行预训练模型

接下来,我们需要修改使用预训练模型的启动脚本,这些脚本都放在 PhotoSketch\scripts 下,我们需要使用的是 test_pretrained.cmd 或者 test_pretrained.sh 这两个脚本。

如果你是 windows 系统,请修改 test_pretrained.cmd 脚本,重点是dataDir、results_dir、checkpoints_dir:


dataDir 指向到 PhotoSketch 所在的文件夹目录,如果你是跟我一样这么配的,results_dir 只需要配成 %dataDir%\PhotoSketch\Results\ 即可,checkpoints_dir 则为 %dataDir%\PhotoSketch\Checkpoints\ 。

如果你是macOS或者Linux,则修改 test_pretrained.sh 文件,修改方法与上面windows 的一样,只不过 反斜杠 "\" 要换成 斜杆 "/" 。

修改完脚本后,打开命令行/终端,输入以下命令,就会将你 PhotoSketch\examples 目录下的文件转化为“速写”。

windows:

scripts\test_pretrained.cmd

Linux/MacOS:

./scripts/test_pretrained.sh

转化结果可以在 PhotoSketch\Results 中看到,如下两图所示。

待转化目录:

转化后:

可以看到效果其实不是非常好,由于是作者预训练的模型,所以效果不好也正常,如果大家需要的话,可以自己针对性地拿一些图像训练模型,并针对性地做识别,这样做效果才是最好的。

你需要训练或测试自己的模型也非常简单:

  • 在仓库的根目录中,运行 scripts/train.sh 可以训练模型

  • 在仓库的根目录中,运行 scripts/test.sh 可以测试val集或测试集

当然训练过程肯定没这么简单,你会遇到不少问题,但是我相信大部分都是存放图片的目录结构上的问题,大家如果有兴趣可以动手试试。

原创不易,希望你能在下面点个赞和在看支持我继续创作,谢谢!

文末福利

各位猿们,还在为记不住API发愁吗,哈哈哈,最近发现了国外大师整理了一份Python代码速查表和Pycharm快捷键sheet,火爆国外,这里分享给大家。

这个是一份Python代码速查表

下面的宝藏图片是2张(windows && Mac)高清的PyCharm快捷键一览图

怎样获取呢?可以添加我们的AI派团队的Beyonce小姐姐

一定要备注【高清图】

????????????????????

➕我们的Beyonce小姐姐微信要记得备注【高清图】

来都来了,喜欢的话就请分享点赞在看三连再走吧~~~

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值