Generalized Zero- and Few-Shot Learning via Aligned Variational Autoencoders【CVPR2019】

该论文提出了一种通过模态特定对齐变分自编码器学习图像特征和类别嵌入共享潜在空间的方法,以解决通用零样本和少样本学习问题。通过对图像和侧信息的分布进行对齐,生成包含未见过类别关键多模态信息的潜在特征。在CUB、SUN、AWA1和AWA2等基准数据集上,该方法在通用零样本和少样本学习中取得了新的最佳结果,并在ImageNet的大规模设置中显示出良好的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PDF:Generalized Zero- and Few-Shot Learning via Aligned Variational Autoencoders
code:implement by pytorch

摘要

Many approaches in generalized zero-shot learning rely on cross-modal mapping between the image feature space and the class embedding space. As labeled images are expensive, one direction is to augment the dataset by generating either images or image features. However, the former misses fine-grained details and the latter requires learning a mapping associated with class embeddings. In this work,we take feature generation one step further and propose a model where a shared latent space of image features and class embeddings is learned by modality-specific aligned variational autoencoders. This leaves us with the required discriminative information about the image and classes in the latent features, on which we tra

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值