import d2lzh as d2l
from mxnet.gluon import data as gdata
import sys
import time
#获取数据
mnist_train=gdata.vision.FashionMNIST(train=True)
mnist_test=gdata.vision.FashionMNIST(train=False)
'''print(len(mnist_train),len(mnist_test))
feature,label=mnist_train[0]
print(feature.shape,feature.dtype)
print(label,type(label),label.dtype)'''
#输出训练数据集前9个样本
X,y=mnist_train[0:9]
d2l.show_fashion_mnist(X,d2l.get_fashion_mnist_labels(y))
batch_size=256
transformer=gdata.vision.transforms.ToTensor()
if sys.platform.startswith('win'):
num_workers=0
else:
num_workers=4
#transform_first把<NDArray 28x28x1 @cpu(0)>转化为<NDArray 1x28x28 @cpu(0)>
train_iter=gdata.DataLoader(mnist_train.transform_first(transformer),batch_size,shuffle=True,num_workers=num_workers)
test_iter=gdata.DataLoader(mnist_test.transform_first(transformer),batch_size,shuffle=True,num_workers=num_workers)
start=time.time()
for X,y in train_iter:
continue
print("%.2f sec"%(time.time()-start))

mxnet程序中经常用的d2lzh包链接点击下载
本文介绍如何使用MXNet的Gluon库加载并预处理FashionMNIST数据集,包括数据集的获取、数据展示、创建数据迭代器等步骤。通过ToTensor()转换器将图像数据转化为张量,适用于深度学习模型输入。
432

被折叠的 条评论
为什么被折叠?



