import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
transform=transforms.Compose(
[
#将图片的灰度范围从0-255转到0-1
transforms.ToTensor(),
#(0.5,0.5,0.5) 是 R G B 三个通道上的均值, 后面(0.5, 0.5, 0.5)是三个通道的标准差
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))
]
)
trainset = torchvision.datasets.CIFAR10(root='./CIFAR10/CifarTrainData',train=True,download=True,transform=transform)
trainloader = torch.utils.data.DataLoader(trainset,batch_size=2,shuffle=True,num_workers=0)
testset = torchvision.datasets.CIFAR10(root='./CIFAR10/CifarTestData',train=False,download=True,transform=transform)
testloader = torch.utils.data.DataLoader(testset,batch_size=2,shuffle=False,num_workers=0)
classes=('plane', 'car', 'bird'