方法一:回溯算法
class Solution:
def permute(self, nums: List[int]) -> List[List[int]]:
def backtrack(first = 0):
if first == n:
output.append(nums[:])
for i in range(first, n):
nums[first], nums[i] = nums[i], nums[first]
backtrack(first + 1)
nums[first], nums[i] = nums[i], nums[first]
n = len(nums)
output = []
backtrack()
return output
方法二:
class Solution:
def permute(self, nums: List[int]) -> List[List[int]]:
def dfs(nums, size, depth, path, state, res):
if depth == size:
res.append(path[:])
return
for i in range(size):
if ((state >> i) & 1) == 0:
dfs(nums, size, depth + 1, path + [nums[i]], state ^ (1 << i), res)
size = len(nums)
if len(nums) == 0:
return []
state = 0
res = []
dfs(nums, size, 0, [], state, res)
return res
方法三:
class Solution:
def permute(self, nums: List[int]) -> List[List[int]]:
def dfs(nums, size, depth, path, used, res):
if depth == size:
res.append(path[:])
return
for i in range(size):
if not used[i]:
used[i] = True
path.append(nums[i])
dfs(nums, size, depth+1, path, used, res)
used[i] = False
path.pop()
size = len(nums)
if len(nums) == 0:
return []
used = [False for _ in range(size)]
res = []
dfs(nums, size, 0, [], used, res)
return res
本文深入探讨了三种不同的排列算法实现方式,包括回溯算法、深度优先搜索(DFS)以及使用状态位的方法。每种方法都有其独特的优缺点,适用于不同的场景。通过详细的代码解析,读者可以理解如何在Python中实现这些算法。
908

被折叠的 条评论
为什么被折叠?



