HYSBZ 3527 力

HYSBZ 3527 力

题目描述:

输入一个数列 qi (1<i<N) ,令:

Fj=i<jqiqj(ij)2i>jqiqj(ij)2

计算所有 Ei=Fiqi

题解:

打表,脑补之后发现,构造函数:

A(x)=i=0i<Nqi+1xiB(x)=i=Ni<2N2xi(iN+1)2i=0i<N1xi(Ni1)2

Ei 就等于 AB i+N1 次项系数。FFT即可。

题目链接: vjudge 原网站

代码:

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;

#define MAXN 1000010

const double pi = acos(-1);

static struct tComplex
{
    double x, y;
    tComplex(): x(0), y(0) {}
    tComplex(double a, double b): x(a), y(b) {}
    friend tComplex operator + (tComplex a, tComplex b)
    {
        return tComplex(a.x + b.x, a.y + b.y);
    }
    friend tComplex operator - (tComplex a, tComplex b)
    {
        return tComplex(a.x - b.x, a.y - b.y);
    }
    friend tComplex operator * (tComplex a, tComplex b)
    {
        return tComplex(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
    }
} A[MAXN], B[MAXN];
static int N, L, binL, R[MAXN];

inline void FFT(tComplex A[], int type)
{
    for (int i = 0; i < binL; i++)
        if (R[i] > i) swap(A[i], A[R[i]]);
    for (int i = 1; i < binL; i <<= 1)
    {
        tComplex wn = tComplex(cos(pi / i), sin(type * pi / i));
        for (int j = 0; j < binL; j += (i << 1))
        {
            tComplex w = tComplex(1, 0);
            for (int k = 0; k < i; k++, w = w * wn)
            {
                tComplex x = A[j + k], y = A[i + j + k] * w;
                A[j + k] = x + y;
                A[i + j + k] = x - y;
            }
        }
    }
    if (!~type)
        for (int i = 0; i < binL; i++) A[i].x /= (double)binL;
}

int main()
{
    scanf("%d", &N);
    N--;
    for (int i = 0; i <= N; i++) scanf("%lf", &A[i].x);
    for (int i = 0; i < N; i++) B[i].x = (-1.0) / ((long long)(N - i) * (N - i));
    for (int i = N + 1; i <= 2 * N; i++) B[i].x = -B[2 * N - i].x;
    for (L = 0, binL = 1; binL <= 4 * N; L++, binL <<= 1);
    for (int i = 0; i < binL; i++)
        R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    FFT(A, 1);
    FFT(B, 1);
    for (int i = 0; i <= binL; i++) A[i] = A[i] * B[i];
    FFT(A, -1);
    for (int i = N; i <= 2 * N; i++) printf("%.3lf\n", A[i].x);
    return 0;
}

提交记录(AC / Total = 1 / 1):

Run IDRemote Run IDTime(ms)Memory(kb)ResultSubmit Time
85248501940840386435976AC2017-03-22 20:28:13
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值