CodeForces 674E Bear and Destroying Subtrees

本文介绍CodeForces674E题目的解决方案,该题要求维护一棵树并支持插入节点及计算特定子树最大深度期望值的操作。通过概率转移的方法,计算每个节点的子树最大深度概率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CodeForces 674E Bear and Destroying Subtrees

题目描述:

要求维护一棵树,支持以下两种操作:

  1. 以某个节点为父亲,插入一个节点;
  2. 询问对于以某个节点为根的子树,若子树当中每条边有 12 的概率被删除,那么整棵子树最大深度的期望值是多少。

初始时,树中仅有一个节点。

题解:

首先,太深的节点我们不用考虑,因为这样的节点对答案的影响太小了,可以忽略不计。

dpi,h 表示对于以节点 i 为根的子树,操作之后最大深度为 h 的概率是多少。

假设新插入了节点 u ,那么只需要更新 u 的父亲,它父亲的父亲……以此类推,直到相对深度达到一个常数 MAXH (本题中大概 70 左右就行)。

容易得到等式:

dpi,h=jsoni(12+dpj,h1)

所以更新的时候把旧的值除掉再乘以新的值就行了。

题目链接: vjudge 原网站

代码:

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;

#define MAXN 500010
#define MAXH 70

static int N = 1, Q, fa[MAXN], deg[MAXN];
static double dp[MAXN][MAXH];

int main()
{
    for (int i = 0; i < MAXH; i++) dp[N][i] = 1;
    scanf("%d", &Q);
    while (Q--)
    {
        int type, u; scanf("%d%d", &type, &u);
        if (type == 1)
        {
            deg[fa[++N] = u]++;
            for (int i = 0; i < MAXH; i++) dp[N][i] = 1;
            double tmp1 = dp[u][0], tmp2;
            dp[u][0] = pow(0.5, deg[u]);
            for (int i = 1; fa[u] && i < MAXH; i++, u = fa[u])
            {
                tmp2 = dp[fa[u]][i];
                dp[fa[u]][i] /= 0.5 + 0.5 * tmp1;
                dp[fa[u]][i] *= 0.5 + 0.5 * dp[u][i-1];
                tmp1 = tmp2;
            }
        }
        else
        {
            double ans = 0;
            for (int i = 1; i < MAXH; i++)
                ans += (dp[u][i] - dp[u][i-1]) * i;
            printf("%.12f\n", ans);
        }
    }
    return 0;
}

提交记录(AC / Total = 1 / 1):

Run IDRemote Run IDTime(ms)Memory(kb)ResultSubmit Time
851800025702518608279736AC2017-03-22 10:24:05
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值