一位同学的Python大作业【分析当当网书籍价格、出版社、电子书版本占比数据】

本文介绍了使用Python进行网络爬虫,从当当网抓取书籍的基本信息,包括标题、作者、评价等,并存储到CSV文件中。之后,利用这些数据生成价格区间和出版社数量的可视化图表,以及评论内容的词云图,展示了数据处理和分析的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

本次案例实现目标

  • 书籍基本数据
  • 实现可视化图表
  • 书籍评论数据
  • 评论可以实现词云图

最基本思路流程: <通用>

一. 数据来源分析

1.只有当你知道你想要数据内容, 是来自于哪里的时候, 才能通过代码请求得到数据
2.打开 F12 开发者工具进行抓包分析 通过关键字进行搜索查询
3.数据包是请求那个url地址

二. 代码实现步骤过程: 代码实现基本四大步骤

1.发送请求, 模拟浏览器对于url地址<刚刚分析得到的url地址>发送请求
2.获取数据, 获取服务器返回响应数据 —> 开发者工具里面 response
3.解析数据, 提取我们想要的数据内容 —> 书籍基本信息
4.保存数据, 把数据内容保存到表格里面

代码实现

获取书籍详情信息

发送请求

url = f'http://bang.dangdang.com/books/bestsellers/01.00.00.00.00.00-recent7-0-0-1-1'
# 代码模拟浏览器发送请求 ---> headers请求头 <可以复制粘贴>
headers = {
    # User-Agent 用户代理 表示浏览器基本身份标识
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.0.0 Safari/537.36'
}
# 发送请求
response = requests.get(url=url, headers=headers)

解析数据

# 转换数据类型 ---> 可解析对象
selector = parsel.Selector(response.text)
# 第一次提取, 获取所有li标签
lis = selector.css('.bang_list_mode li')  # 返回列表
# for循环遍历, 把列表里面的元素一个一个提取出来
for li in lis:
    title = li.css('.name a::attr(title)').get()  # 标题/书名
    recommend = li.css('.tuijian::text').get().replace('推荐', '')  # 推荐
    star = li.css('.star a::text').get().replace('条评论', '')  # 评价
    author = li.css('div:nth-child(5) a:nth-child(1)::attr(title)').get()  # 作者
    date = li.css('div:nth-child(6) span::text').get()  # 出版日期
    press = li.css('div:nth-child(6) a::text').get()  # 出版社
    price_r = li.css('.price .price_r::text').get()  # 原价
    price_n = li.css('.price .price_n::text').get()  # 售价
    price_e = li.css('.price_e span::text').get()  # 电子书价格
    href = li.css('.name a::attr(href)').get()  # 详情页
    dit = {
        '标题': title,
        '推荐': recommend,
        '评价': star,
        '作者': author,
        '出版日期': date,
        '出版社': press,
        '原价': price_r,
        '售价': price_n,
        '电子书价格': price_e,
        '详情页': href,
    }
    csv_writer.writerow(dit)
    print(dit)

保存数据

f = open('书籍.csv', mode='a', encoding='utf-8', newline='')
csv_writer = csv.DictWriter(f, fieldnames=[
    '标题',
    '推荐',
    '评价',
    '作者',
    '出版日期',
    '出版社',
    '原价',
    '售价',
    '电子书价格',
    '详情页',
])
# 写入表头
csv_writer.writeheader()

运行代码得到结果

在这里插入图片描述
在这里插入图片描述

可视化图表

书籍总体价格区间

pie1 = (
    Pie(init_opts=opts.InitOpts(theme='dark',width='1000px',height='600px'))
    
    .add('', datas_pair_1, radius=['35%', '60%'])
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%"))
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title="当当网书籍\n\n原价价格区间", 
            pos_left='center', 
            pos_top='center',
            title_textstyle_opts=opts.TextStyleOpts(
                color='#F0F8FF', 
                font_size=20, 
                font_weight='bold'
            ),
        )
    )
    .set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF', '#7FFFAA'])
)
pie1.render_notebook() 

在这里插入图片描述
各个出版社书籍数量柱状图

pie1 = (
    Pie(init_opts=opts.InitOpts(theme='dark',width='1000px',height='600px'))
    
    .add('', datas_pair_2, radius=['35%', '60%'])
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%"))
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title="当当网书籍\n\n售价价格区间", 
            pos_left='center', 
            pos_top='center',
            title_textstyle_opts=opts.TextStyleOpts(
                color='#F0F8FF', 
                font_size=20, 
                font_weight='bold'
            ),
        )
    )
    .set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF', '#7FFFAA'])
)
pie1.render_notebook() 

在这里插入图片描述

电子书版本占比

在这里插入图片描述

书籍评论数据

for page in range(1, 11):
    time.sleep(1)
    # 确定请求url地址
    url = 'http://product.dangdang.com/index.php'
    # 请求参数
    data = {
        'r': 'comment/list',
        'productId': '29129370',
        'categoryPath': '01.43.79.01.00.00',
        'mainProductId': '29129370',
        'mediumId': '0',
        'pageIndex': page,
        'sortType': '1',
        'filterType': '1',
        'isSystem': '1',
        'tagId': '0',
        'tagFilterCount': '0',
        'template': 'publish',
        'long_or_short': 'short',
    }
    # headers 请求头
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.0.0 Safari/537.36'
    }
    # 发送请求
    response =  requests.get(url=url, params=data, headers=headers)
    # response.json() 获取响应json字典数据 键值对取值 ---> 根据冒号左边的内容, 提取冒号右边的内容
    html_data = response.json()['data']['list']['html']
    content_list = re.findall("<span><a href=.*?' target='_blank'>(.*?)</a></span>", html_data)
    with open('评论.txt', mode='a', encoding='utf-8') as f:
        f.write('\n'.join(content_list))
        f.write('\n')
        print(content_list)

在这里插入图片描述
[

词云

import jieba # 分词模块 pip install jieba
import wordcloud
import imageio
img = imageio.imread('123.png')
# wordcloud
# 1. 打开文件 获取弹幕数据
# mode='r' 一定要写吗  不一定 默认以 r
# encoding='' 要写吗?  肯定要的
f = open('评论.txt', mode='r', encoding='utf-8')
txt = f.read()
# print(txt)
# 2. jieba分词 分割词汇
txt_list = jieba.lcut(txt)
# print(txt_list)
# 列表转字符串怎么转
string = ' '.join(txt_list)
# print(string)
# 3. 词云图设置
wc = wordcloud.WordCloud(
    width=800,  # 宽度
    height=500, # 高度
    background_color='white', # 背景颜色
    mask=img, # 设置图片样式
    font_path='msyh.ttc',
    scale=15,
    stopwords={'了', '的'},
    contour_width=5,
    contour_color='red'
)
# 4. 输入文字内容 (字符串的形式)
wc.generate(string)
# 5. 输出图片
wc.to_file('output2.png')

在这里插入图片描述
👇问题解答 · 源码获取 · 技术交流 · 请联系我👇

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值