LeetCode:34. Find First and Last Position of Element in Sorted Array

该博客围绕LeetCode 34题展开,要在升序整型数组中找目标值的起始和结束位置,不存在则返回[-1,-1],要求时间复杂度不高于O(log n)。思路是用二分查找先找到首个目标值,再向两边扩展找边界,还给出Python代码,时间复杂度为O(log(n))。

LeetCode:34. Find First and Last Position of Element in Sorted Array

Given an array of integers nums sorted in ascending order, find the starting and ending position of a given target value.

Your algorithm's runtime complexity must be in the order of O(log n).

If the target is not found in the array, return [-1, -1].

Example 1:

Input: nums = [5,7,7,8,8,10], target = 8
Output: [3,4]

Example 2:

Input: nums = [5,7,7,8,8,10], target = 6
Output: [-1,-1]

在一个升序整型数组中,找到目标值(多个)的起始位置和结束位置。如果不存在则返回[-1,-1]。要求时间复杂度不高于O(log n)。

思路

先用二分查找找到第一个目标值,然后向两边扩展找出所有目标值,并返回左右边界。

Python 代码实现

class Solution:
    def searchRange(self, nums: List[int], target: int) -> List[int]:
        pos = -1
        left = 0
        right = len(nums)-1
        while left <= right:
            mid = (int)((left+right)/2)
            if nums[mid] == target:
                pos = mid
                break
            if nums[mid] > target :
                right = mid -1
            if nums[mid] < target :
                left = mid+1
                        
        if pos == -1:
            return [pos,pos]
        else:
            leftBound = pos
            rightBound = pos
            while leftBound >=0:
                if nums[leftBound] == target:
                    leftBound-=1
                else:
                    break
            while rightBound < len(nums):
                if nums[rightBound] == target:
                    rightBound+=1
                else:
                    break
            return [leftBound+1,rightBound-1]

时间复杂度:O(log(n))。


THE END.

### LeetCode Problem 34: Find First and Last Position of Element in Sorted Array The task involves finding the starting and ending position of a given target value within an array of integers. If the target is not found in the array, [-1, -1] should be returned. For instance, consider an input where `nums` = [5,7,7,8,8,10], and `target` = 8. The expected output would be [3, 4]. Another example could involve `nums` = [5,7,7,8,8,10], but this time with `target` = 6, leading to an output of [-1, -1]. To solve this problem efficiently: A binary search approach can achieve logarithmic complexity by narrowing down potential positions for both the first and last occurrence of the target element[^1]: ```python def searchRange(nums, target): def findLeftIndex(nums, target): left, right = 0, len(nums) - 1 while left <= right: mid = (left + right) // 2 if nums[mid] < target: left = mid + 1 else: right = mid - 1 return left def findRightIndex(nums, target): left, right = 0, len(nums) - 1 while left <= right: mid = (left + right) // 2 if nums[mid] <= target: left = mid + 1 else: right = mid - 1 return right left_index = findLeftIndex(nums, target) right_index = findRightIndex(nums, target) # Check if the target exists in the list. if left_index <= right_index < len(nums) and nums[left_index] == target: return [left_index, right_index] return [-1, -1] ``` This code snippet defines two helper functions that perform modified versions of binary searches—one looking for the start index (`findLeftIndex`) and another for the end index (`findRightIndex`). After determining these indices, it checks whether they are valid before returning them as part of the result.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值