关于遗传算法

本文深入探讨遗传算法,从袋鼠在喜马拉雅山脉的模拟出发,解释编码、适应度函数、选择、交叉和变异等概念。通过适应度函数评估袋鼠的海拔高度,选择适应度高的个体进行遗传操作,从而逐步优化解决方案。遗传算法虽不保证最优解,但提供了一种无需直接指导问题解法的智能搜索策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于遗传算法

有很多袋鼠,它们降落到喜玛拉雅山脉的任意地方。这些袋鼠并不知道它们的任务是寻找珠穆朗玛峰。但每过几年,就在一些海拔高度较低的地方射杀一些袋鼠。于是,不断有袋鼠死于海拔较低的地方,而越是在海拔高的袋鼠越是能活得更久,也越有机会生儿育女。就这样经过许多年,这些袋鼠们竟然都不自觉地聚拢到了一个个的山峰上,可是在所有的袋鼠中,只有聚拢到珠穆朗玛峰的袋鼠被带回了美丽的澳洲。

  1. 首先寻找一种对问题潜在解进行“数字化”编码的方案。(建立表现型和基因型的映射关系)
  2. 随机初始化一个种群(那么第一批袋鼠就被随意地分散在山脉上),种群里面的个体就是这些数字化的编码。
  3. 接下来,通过适当的解码过程之后(得到袋鼠的位置坐标)。
  4. 用适应性函数对每一个基因个体作一次适应度评估(袋鼠爬得越高当然就越好,所以适应度相应越高)。
  5. 用选择函数按照某种规定择优选择(每隔一段时间,射杀一些所在海拔较低的袋鼠,以保证袋鼠总体数目持平。)。
  6. 让个体基因变异(让袋鼠随机地跳一跳)。
  7. 然后产生子代(希望存活下来的袋鼠是多产的,并在那里生儿育女)。

遗传算法并不保证你能获得问题的最优解,但是使用遗传算法的最大优点在于你不必去了解和操心如何去“找”最优解。(你不必去指导袋鼠向那边跳,跳多远。)而只要简单的“否定”一些表现不好的个体就行了。(把那些总是爱走下坡路的袋鼠射杀,这就是遗传算法的精粹!)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值