DML + 因果森林
DML + 广义随机森林 = 正交随机森林
代码:因果森林+ DML
from lightgbm import LGBMRegressor
from econml.dml import DML, CausalForestDML
######第一步,训练uplift模型########
dmlmodel = CausalForestDML(
criterion='mse',
n_estimators=240,
max_depth=4,
min_samples_leaf=2000,
min_samples_split=2000,
n_jobs=-1,
model_y=LGBMRegressor(n_estimators=250, ##
max_depth=5,
num_leaves=31,
learning_rate=0.01,
subsample=0.7,
min_child_samples=2000,
reg_alpha=0.01,
reg_lambda=0.01,
importance_type='gain'),
#model_t=RandomPropensityScoreModel(t),此处可以自定义,但是如果不添加,那么用默认的数据
, verbose=0
, discrete_treatment=False
, honest=True
, min_var_fraction_leaf=0.1
, min_var_leaf_on_val=True
)
dmlmodel.fit(Y=y, T=t, X=

最低0.47元/天 解锁文章
1025

被折叠的 条评论
为什么被折叠?



