|
Smallest Sub-Array Input: Standard Input Output: Standard Output |
Consider an integer sequence consisting of N elements where –
X1 = 1
X2 = 2
X3 = 3
Xi = (Xi-1 + Xi-2 + Xi-3) % M + 1 for i = 4 to N
Find 2 values a and b so that the sequence (Xa Xa+1 Xa+2 ... Xb-1 Xb) contains all the integers from [1,K]. If there are multiple solutions then make sure (b-a) is as low as possible.
In other words, find the smallest subsequence from the given sequence that contains all the integers from 1 to K.
Consider an example where N = 20, M = 12 and K = 4.
The sequence is {1 2 3 7 1 12 9 11 9 6 3 7 5 4 5 3 1 10 3 3}.
The smallest subsequence that contains all the integers {1 2 3 4} has length 13 and is highlighted in the following sequence:
{1 2 3 7 1 12 9 11 9 6 3 7 5 4 5 3 1 10 3 3}.
Input
First line of input is an integer T(T<100) that represents the number of test cases. Each case consists of a line containing 3 integers N(2 <N < 1000001), M(0 < M < 1001) and K(1< K < 101). The meaning of these variables is mentioned above.
Output
For each case, output the case number followed by the minimum length of the subsequence. If there is no valid subsequence, output “sequence nai” instead. Look at the sample for exact format.
Sample Input Output for Sample Input
|
2 20 12 4 20 12 8 |
Case 1: 13 Case 2: sequence nai |
Problemsetter: Sohel Hafiz
Special Thanks: Md. Arifuzzaman Arif
#include <cstdio>
#include <algorithm>
#include <vector>
#include <map>
#include <queue>
#include <iostream>
#include <stack>
#include <set>
#include <cstring>
#include <stdlib.h>
#include <cmath>
using namespace std;
typedef long long LL;
typedef pair<int, int> P;
const int maxn = 1000000 + 5;
const int INF = 1000000000;
int n, m, k;
int x[maxn];
int vis[maxn];
void pre(){
x[1] = 1;x[2] = 2;x[3] = 3;
for(int i = 4;i <= n;i++)
x[i] = (x[i-1]+x[i-2]+x[i-3])%m+1;
}
int main(){
int t, kase = 0;
scanf("%d", &t);
while(t--){
kase++;
scanf("%d%d%d", &n, &m, &k);
pre();
memset(vis, 0, sizeof(vis));
int pos = 1;
int ans = INF;
int cnt = 0;
for(int i = 1;i <= n;i++){
vis[x[i]]++;
if(x[i] <= k && vis[x[i]] == 1) cnt++;
while(vis[x[pos]] > 1 || x[pos] > k){// x[pos]>k !!!
vis[x[pos]]--;
pos++;
}
if(cnt == k) ans = min(ans, i-pos+1);
}
if(ans != INF)
printf("Case %d: %d\n", kase, ans);
else
printf("Case %d: sequence nai\n", kase);
}
return 0;
}
探讨了寻找包含特定整数集合的最短子序列算法,输入序列遵循特定递推公式,目标是最小化子序列长度。
3026

被折叠的 条评论
为什么被折叠?



