Killer Problem
Killer Problem |
You are given an array of N integers and Q queries. Each query is a closed interval [l, r]. You should find the minimum absolute difference between all pairs in that interval.
Input
First line contains an integer T (T






Output
For the i-th query of each test output the minimum | aj–ak| for li


Sample Input
1 10 1 2 4 7 11 10 8 5 1 10000 4 1 10 1 2 3 5 8 10
Sample Output
0 1 3 4
大力出奇迹啊!10^8的算法也过了。主要是a的范围很小,可以用计数排序,然后找相邻两个间的差值,注意如果有某个数计数超过两次,则答案为0,然后停止循环,加上这个优化就过了。。。(后来认识到,区间范围大于10^4时,一定有某个数出现2次,所以复杂度是10^8)
#include <cstdio>
#include <algorithm>
#include <vector>
#include <map>
#include <queue>
#include <iostream>
#include <stack>
#include <set>
#include <cstring>
#include <stdlib.h>
#include <cmath>
using namespace std;
typedef long long LL;
typedef pair<int, int> P;
const int maxn = 200000 + 5;
const int maxk = 10000 + 5;
const int INF = 1000000000;
int a[maxn];
int countn[maxk];
int main(){
int t;
scanf("%d", &t);
while(t--){
int n;
scanf("%d", &n);
int Max = 0;
for(int i = 1;i <= n;i++){
scanf("%d", &a[i]);
Max = max(Max, a[i]);
}
int q;
scanf("%d", &q);
while(q--){
int l, r;
scanf("%d%d", &l, &r);
memset(countn, 0, sizeof(countn));
int ans = INF;
for(int i = l;i <= r;i++){
countn[a[i]]++;
if(countn[a[i]]>1){
ans = 0;
break;
}
}
if(ans != 0){
int last = -1;
for(int i = 1;i <= Max;i++){
if(countn[i] == 0) continue;
if(countn[i] > 1){
ans = 0;
break;
}
if(last == -1){
last = i;
continue;
}
ans = min(ans, i-last);
last = i;
}
}
printf("%d\n", ans);
}
}
return 0;
}