checkio (Determine the order)

本文介绍了一个独特的问题,即从一组已知字母序列中推断出新的字母顺序,并将其组合为一个有序字符串。通过解析每个序列,确定字母之间的相对位置,最终构建出遵循特定顺序的完整字符串。
部署运行你感兴趣的模型镜像

The Robots have found an encrypted message. We cannot decrypt it at the moment, but we can take the first steps toward doing so. You have a set of "words" all in lower case, each word contains symbols in "alphabetical order" (it's not your typical alphabetical order, but a new and different order). We need to determine the order of the symbols from each "word" and create a single "word" with all of these symbols, placing them in the new alphabetial order. In some cases, if we cannot determine the order for several symbols, you should use the traditional latin alphabetical order. For example: Given words "acb", "bd", "zwa". As we can see "z" and "w" must be before "a" and "d" after "b". So the result is "zwacbd".

Precondition: In each test, there can be the only one solution.

Input: A list of strings.

Output: A string.

Example:

?
1
2
3
4
5
checkio(["acb", "bd", "zwa"]) == "zwacbd"
checkio(["klm", "kadl", "lsm"]) == "kadlsm"
checkio(["a", "b", "c"]) == "abc"
checkio(["aazzss"]) == "azs"
checkio(["dfg", "frt", "tyg"]) == "dfrtyg"

把限制条件转换成树的结构,重新定义比较函数,排序得到答案。

def unique(data):
    ret = ''
    for c in data:
        if c not in ret:
            ret += c
    return ret

father = {}

def mycmp(self, other):
    #print self,other
    if not find(self, other):
        if not find(other, self):
            #print '='
            return cmp(self, other)
        else:
            #print '>'
            return -1
    #print '<'
    return 1


def find(x, target):
    while x in father:
        if father[x]==target:
            return True
        x = father[x]
    return False

    
def checkio(data):
    father.clear()
    word = []
    for condition in data:
        condition = unique(condition)
        for i in range(1,len(condition)):
            father[condition[i]] = condition[i-1]

    for condition in data:
        for c in condition:
            word.append(c)
    word = list(unique(word))
    word.sort(cmp=mycmp)
    #print word
    return ''.join(word)
  


#These "asserts" using only for self-checking and not necessary for auto-testing
if __name__ == '__main__':
    
    assert checkio(["acb", "bd", "zwa"]) == "zwacbd", \
        "Just concatenate it"
    assert checkio(["klm", "kadl", "lsm"]) == "kadlsm", \
        "Paste in"
    assert checkio(["a", "b", "c"]) == "abc", \
        "Cant determine the order - use english alphabet"
    
    assert checkio(["aazzss"]) == "azs", \
        "Each symbol only once"
    assert checkio(["dfg", "frt", "tyg"]) == "dfrtyg", \
        "Concatenate and paste in"

A了后看了下高手的代码:

def checkio(data):
    distinct_letters = sorted(set("".join(data)))
    print distinct_letters
    #We just get couples of letters (a, b) such that a must be before b
    constraints = [(word[i], word[i + 1]) for word in data for i in range(len(word) - 1)]
    
    solution_found = False
    while not solution_found:
        solution_found = True
        for (a, b) in constraints:
            ia = distinct_letters.index(a)
            ib = distinct_letters.index(b)
            if ia > ib:
                #We swap the letters
                distinct_letters[ia] = b
                distinct_letters[ib] = a
                solution_found = False
    return "".join(distinct_letters)



您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

C - Brackets Stack Query / Time Limit: 3 sec / Memory Limit: 1024 MiB Score : 300 points Problem Statement A string T is called a good bracket sequence if and only if it satisfies the following condition: T can be made into an empty string by repeating the following operation zero or more times: Choose () contained in T as a (contiguous) substring and remove it. For example, (), (()()), and the empty string are good bracket sequences, but )()( and ))) are not good bracket sequences. There is a string S. Initially, S is an empty string. Process Q queries in the order they are given. After each query, determine whether S is a good bracket sequence. There are two types of queries: 1 c: A character c is given. c is either ( or ). Append c to the end of S. 2: Remove the last character of S. It is guaranteed that S is not an empty string at this time. Constraints 1≤Q≤8×10 5 c in queries of the first type is ( or ). It is guaranteed that S is not empty when a query of the second type is given. Q is an integer. Input The input is given from Standard Input in the following format, where query i ​ denotes the i-th query. Q query 1 ​ query 2 ​ ⋮ query Q ​ Each query is given in one of the following two formats: 1 c 2 Output Output Q lines. The i-th line should contain Yes if the string S immediately after processing the i-th query is a good bracket sequence, and No otherwise. Sample Input 1 Copy 8 1 ( 2 1 ( 1 ) 2 1 ( 1 ) 1 ) Sample Output 1 Copy No Yes No Yes No No No Yes S immediately after processing the 1st query is (, which is not a good bracket sequence. S immediately after processing the 2nd query is an empty string, which is a good bracket sequence. S immediately after processing the 3rd query is (, which is not a good bracket sequence. S immediately after processing the 4th query is (), which is a good bracket sequence. S immediately after processing the 5th query is (, which is not a good bracket sequence. S immediately after processing the 6th query is ((, which is not a good bracket sequence. S immediately after processing the 7th query is ((), which is not a good bracket sequence. S immediately after processing the 8th query is (()), which is a good bracket sequence.c++
10-20
/** ****************************************************************************** * @file stm32f10x_usart.c * @author MCD Application Team * @version V3.5.0 * @date 11-March-2011 * @brief This file provides all the USART firmware functions. ****************************************************************************** * @attention * * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. * * <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2> ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f10x_usart.h" #include "stm32f10x_rcc.h" /** @addtogroup STM32F10x_StdPeriph_Driver * @{ */ /** @defgroup USART * @brief USART driver modules * @{ */ /** @defgroup USART_Private_TypesDefinitions * @{ */ /** * @} */ /** @defgroup USART_Private_Defines * @{ */ #define CR1_UE_Set ((uint16_t)0x2000) /*!< USART Enable Mask */ #define CR1_UE_Reset ((uint16_t)0xDFFF) /*!< USART Disable Mask */ #define CR1_WAKE_Mask ((uint16_t)0xF7FF) /*!< USART WakeUp Method Mask */ #define CR1_RWU_Set ((uint16_t)0x0002) /*!< USART mute mode Enable Mask */ #define CR1_RWU_Reset ((uint16_t)0xFFFD) /*!< USART mute mode Enable Mask */ #define CR1_SBK_Set ((uint16_t)0x0001) /*!< USART Break Character send Mask */ #define CR1_CLEAR_Mask ((uint16_t)0xE9F3) /*!< USART CR1 Mask */ #define CR2_Address_Mask ((uint16_t)0xFFF0) /*!< USART address Mask */ #define CR2_LINEN_Set ((uint16_t)0x4000) /*!< USART LIN Enable Mask */ #define CR2_LINEN_Reset ((uint16_t)0xBFFF) /*!< USART LIN Disable Mask */ #define CR2_LBDL_Mask ((uint16_t)0xFFDF) /*!< USART LIN Break detection Mask */ #define CR2_STOP_CLEAR_Mask ((uint16_t)0xCFFF) /*!< USART CR2 STOP Bits Mask */ #define CR2_CLOCK_CLEAR_Mask ((uint16_t)0xF0FF) /*!< USART CR2 Clock Mask */ #define CR3_SCEN_Set ((uint16_t)0x0020) /*!< USART SC Enable Mask */ #define CR3_SCEN_Reset ((uint16_t)0xFFDF) /*!< USART SC Disable Mask */ #define CR3_NACK_Set ((uint16_t)0x0010) /*!< USART SC NACK Enable Mask */ #define CR3_NACK_Reset ((uint16_t)0xFFEF) /*!< USART SC NACK Disable Mask */ #define CR3_HDSEL_Set ((uint16_t)0x0008) /*!< USART Half-Duplex Enable Mask */ #define CR3_HDSEL_Reset ((uint16_t)0xFFF7) /*!< USART Half-Duplex Disable Mask */ #define CR3_IRLP_Mask ((uint16_t)0xFFFB) /*!< USART IrDA LowPower mode Mask */ #define CR3_CLEAR_Mask ((uint16_t)0xFCFF) /*!< USART CR3 Mask */ #define CR3_IREN_Set ((uint16_t)0x0002) /*!< USART IrDA Enable Mask */ #define CR3_IREN_Reset ((uint16_t)0xFFFD) /*!< USART IrDA Disable Mask */ #define GTPR_LSB_Mask ((uint16_t)0x00FF) /*!< Guard Time Register LSB Mask */ #define GTPR_MSB_Mask ((uint16_t)0xFF00) /*!< Guard Time Register MSB Mask */ #define IT_Mask ((uint16_t)0x001F) /*!< USART Interrupt Mask */ /* USART OverSampling-8 Mask */ #define CR1_OVER8_Set ((u16)0x8000) /* USART OVER8 mode Enable Mask */ #define CR1_OVER8_Reset ((u16)0x7FFF) /* USART OVER8 mode Disable Mask */ /* USART One Bit Sampling Mask */ #define CR3_ONEBITE_Set ((u16)0x0800) /* USART ONEBITE mode Enable Mask */ #define CR3_ONEBITE_Reset ((u16)0xF7FF) /* USART ONEBITE mode Disable Mask */ /** * @} */ /** @defgroup USART_Private_Macros * @{ */ /** * @} */ /** @defgroup USART_Private_Variables * @{ */ /** * @} */ /** @defgroup USART_Private_FunctionPrototypes * @{ */ /** * @} */ /** @defgroup USART_Private_Functions * @{ */ /** * @brief Deinitializes the USARTx peripheral registers to their default reset values. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @retval None */ void USART_DeInit(USART_TypeDef* USARTx) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); if (USARTx == USART1) { RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART1, ENABLE); RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART1, DISABLE); } else if (USARTx == USART2) { RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART2, ENABLE); RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART2, DISABLE); } else if (USARTx == USART3) { RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART3, ENABLE); RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART3, DISABLE); } else if (USARTx == UART4) { RCC_APB1PeriphResetCmd(RCC_APB1Periph_UART4, ENABLE); RCC_APB1PeriphResetCmd(RCC_APB1Periph_UART4, DISABLE); } else { if (USARTx == UART5) { RCC_APB1PeriphResetCmd(RCC_APB1Periph_UART5, ENABLE); RCC_APB1PeriphResetCmd(RCC_APB1Periph_UART5, DISABLE); } } } /** * @brief Initializes the USARTx peripheral according to the specified * parameters in the USART_InitStruct . * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param USART_InitStruct: pointer to a USART_InitTypeDef structure * that contains the configuration information for the specified USART * peripheral. * @retval None */ void USART_Init(USART_TypeDef* USARTx, USART_InitTypeDef* USART_InitStruct) { uint32_t tmpreg = 0x00, apbclock = 0x00; uint32_t integerdivider = 0x00; uint32_t fractionaldivider = 0x00; uint32_t usartxbase = 0; RCC_ClocksTypeDef RCC_ClocksStatus; /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_USART_BAUDRATE(USART_InitStruct->USART_BaudRate)); assert_param(IS_USART_WORD_LENGTH(USART_InitStruct->USART_WordLength)); assert_param(IS_USART_STOPBITS(USART_InitStruct->USART_StopBits)); assert_param(IS_USART_PARITY(USART_InitStruct->USART_Parity)); assert_param(IS_USART_MODE(USART_InitStruct->USART_Mode)); assert_param(IS_USART_HARDWARE_FLOW_CONTROL(USART_InitStruct->USART_HardwareFlowControl)); /* The hardware flow control is available only for USART1, USART2 and USART3 */ if (USART_InitStruct->USART_HardwareFlowControl != USART_HardwareFlowControl_None) { assert_param(IS_USART_123_PERIPH(USARTx)); } usartxbase = (uint32_t)USARTx; /*---------------------------- USART CR2 Configuration -----------------------*/ tmpreg = USARTx->CR2; /* Clear STOP[13:12] bits */ tmpreg &= CR2_STOP_CLEAR_Mask; /* Configure the USART Stop Bits, Clock, CPOL, CPHA and LastBit ------------*/ /* Set STOP[13:12] bits according to USART_StopBits value */ tmpreg |= (uint32_t)USART_InitStruct->USART_StopBits; /* Write to USART CR2 */ USARTx->CR2 = (uint16_t)tmpreg; /*---------------------------- USART CR1 Configuration -----------------------*/ tmpreg = USARTx->CR1; /* Clear M, PCE, PS, TE and RE bits */ tmpreg &= CR1_CLEAR_Mask; /* Configure the USART Word Length, Parity and mode ----------------------- */ /* Set the M bits according to USART_WordLength value */ /* Set PCE and PS bits according to USART_Parity value */ /* Set TE and RE bits according to USART_Mode value */ tmpreg |= (uint32_t)USART_InitStruct->USART_WordLength | USART_InitStruct->USART_Parity | USART_InitStruct->USART_Mode; /* Write to USART CR1 */ USARTx->CR1 = (uint16_t)tmpreg; /*---------------------------- USART CR3 Configuration -----------------------*/ tmpreg = USARTx->CR3; /* Clear CTSE and RTSE bits */ tmpreg &= CR3_CLEAR_Mask; /* Configure the USART HFC -------------------------------------------------*/ /* Set CTSE and RTSE bits according to USART_HardwareFlowControl value */ tmpreg |= USART_InitStruct->USART_HardwareFlowControl; /* Write to USART CR3 */ USARTx->CR3 = (uint16_t)tmpreg; /*---------------------------- USART BRR Configuration -----------------------*/ /* Configure the USART Baud Rate -------------------------------------------*/ RCC_GetClocksFreq(&RCC_ClocksStatus); if (usartxbase == USART1_BASE) { apbclock = RCC_ClocksStatus.PCLK2_Frequency; } else { apbclock = RCC_ClocksStatus.PCLK1_Frequency; } /* Determine the integer part */ if ((USARTx->CR1 & CR1_OVER8_Set) != 0) { /* Integer part computing in case Oversampling mode is 8 Samples */ integerdivider = ((25 * apbclock) / (2 * (USART_InitStruct->USART_BaudRate))); } else /* if ((USARTx->CR1 & CR1_OVER8_Set) == 0) */ { /* Integer part computing in case Oversampling mode is 16 Samples */ integerdivider = ((25 * apbclock) / (4 * (USART_InitStruct->USART_BaudRate))); } tmpreg = (integerdivider / 100) << 4; /* Determine the fractional part */ fractionaldivider = integerdivider - (100 * (tmpreg >> 4)); /* Implement the fractional part in the register */ if ((USARTx->CR1 & CR1_OVER8_Set) != 0) { tmpreg |= ((((fractionaldivider * 8) + 50) / 100)) & ((uint8_t)0x07); } else /* if ((USARTx->CR1 & CR1_OVER8_Set) == 0) */ { tmpreg |= ((((fractionaldivider * 16) + 50) / 100)) & ((uint8_t)0x0F); } /* Write to USART BRR */ USARTx->BRR = (uint16_t)tmpreg; } /** * @brief Fills each USART_InitStruct member with its default value. * @param USART_InitStruct: pointer to a USART_InitTypeDef structure * which will be initialized. * @retval None */ void USART_StructInit(USART_InitTypeDef* USART_InitStruct) { /* USART_InitStruct members default value */ USART_InitStruct->USART_BaudRate = 9600; USART_InitStruct->USART_WordLength = USART_WordLength_8b; USART_InitStruct->USART_StopBits = USART_StopBits_1; USART_InitStruct->USART_Parity = USART_Parity_No ; USART_InitStruct->USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_InitStruct->USART_HardwareFlowControl = USART_HardwareFlowControl_None; } /** * @brief Initializes the USARTx peripheral Clock according to the * specified parameters in the USART_ClockInitStruct . * @param USARTx: where x can be 1, 2, 3 to select the USART peripheral. * @param USART_ClockInitStruct: pointer to a USART_ClockInitTypeDef * structure that contains the configuration information for the specified * USART peripheral. * @note The Smart Card and Synchronous modes are not available for UART4 and UART5. * @retval None */ void USART_ClockInit(USART_TypeDef* USARTx, USART_ClockInitTypeDef* USART_ClockInitStruct) { uint32_t tmpreg = 0x00; /* Check the parameters */ assert_param(IS_USART_123_PERIPH(USARTx)); assert_param(IS_USART_CLOCK(USART_ClockInitStruct->USART_Clock)); assert_param(IS_USART_CPOL(USART_ClockInitStruct->USART_CPOL)); assert_param(IS_USART_CPHA(USART_ClockInitStruct->USART_CPHA)); assert_param(IS_USART_LASTBIT(USART_ClockInitStruct->USART_LastBit)); /*---------------------------- USART CR2 Configuration -----------------------*/ tmpreg = USARTx->CR2; /* Clear CLKEN, CPOL, CPHA and LBCL bits */ tmpreg &= CR2_CLOCK_CLEAR_Mask; /* Configure the USART Clock, CPOL, CPHA and LastBit ------------*/ /* Set CLKEN bit according to USART_Clock value */ /* Set CPOL bit according to USART_CPOL value */ /* Set CPHA bit according to USART_CPHA value */ /* Set LBCL bit according to USART_LastBit value */ tmpreg |= (uint32_t)USART_ClockInitStruct->USART_Clock | USART_ClockInitStruct->USART_CPOL | USART_ClockInitStruct->USART_CPHA | USART_ClockInitStruct->USART_LastBit; /* Write to USART CR2 */ USARTx->CR2 = (uint16_t)tmpreg; } /** * @brief Fills each USART_ClockInitStruct member with its default value. * @param USART_ClockInitStruct: pointer to a USART_ClockInitTypeDef * structure which will be initialized. * @retval None */ void USART_ClockStructInit(USART_ClockInitTypeDef* USART_ClockInitStruct) { /* USART_ClockInitStruct members default value */ USART_ClockInitStruct->USART_Clock = USART_Clock_Disable; USART_ClockInitStruct->USART_CPOL = USART_CPOL_Low; USART_ClockInitStruct->USART_CPHA = USART_CPHA_1Edge; USART_ClockInitStruct->USART_LastBit = USART_LastBit_Disable; } /** * @brief Enables or disables the specified USART peripheral. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param NewState: new state of the USARTx peripheral. * This parameter can be: ENABLE or DISABLE. * @retval None */ void USART_Cmd(USART_TypeDef* USARTx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the selected USART by setting the UE bit in the CR1 register */ USARTx->CR1 |= CR1_UE_Set; } else { /* Disable the selected USART by clearing the UE bit in the CR1 register */ USARTx->CR1 &= CR1_UE_Reset; } } /** * @brief Enables or disables the specified USART interrupts. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param USART_IT: specifies the USART interrupt sources to be enabled or disabled. * This parameter can be one of the following values: * @arg USART_IT_CTS: CTS change interrupt (not available for UART4 and UART5) * @arg USART_IT_LBD: LIN Break detection interrupt * @arg USART_IT_TXE: Transmit Data Register empty interrupt * @arg USART_IT_TC: Transmission complete interrupt * @arg USART_IT_RXNE: Receive Data register not empty interrupt * @arg USART_IT_IDLE: Idle line detection interrupt * @arg USART_IT_PE: Parity Error interrupt * @arg USART_IT_ERR: Error interrupt(Frame error, noise error, overrun error) * @param NewState: new state of the specified USARTx interrupts. * This parameter can be: ENABLE or DISABLE. * @retval None */ void USART_ITConfig(USART_TypeDef* USARTx, uint16_t USART_IT, FunctionalState NewState) { uint32_t usartreg = 0x00, itpos = 0x00, itmask = 0x00; uint32_t usartxbase = 0x00; /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_USART_CONFIG_IT(USART_IT)); assert_param(IS_FUNCTIONAL_STATE(NewState)); /* The CTS interrupt is not available for UART4 and UART5 */ if (USART_IT == USART_IT_CTS) { assert_param(IS_USART_123_PERIPH(USARTx)); } usartxbase = (uint32_t)USARTx; /* Get the USART register index */ usartreg = (((uint8_t)USART_IT) >> 0x05); /* Get the interrupt position */ itpos = USART_IT & IT_Mask; itmask = (((uint32_t)0x01) << itpos); if (usartreg == 0x01) /* The IT is in CR1 register */ { usartxbase += 0x0C; } else if (usartreg == 0x02) /* The IT is in CR2 register */ { usartxbase += 0x10; } else /* The IT is in CR3 register */ { usartxbase += 0x14; } if (NewState != DISABLE) { *(__IO uint32_t*)usartxbase |= itmask; } else { *(__IO uint32_t*)usartxbase &= ~itmask; } } /** * @brief Enables or disables the USART’s DMA interface. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param USART_DMAReq: specifies the DMA request. * This parameter can be any combination of the following values: * @arg USART_DMAReq_Tx: USART DMA transmit request * @arg USART_DMAReq_Rx: USART DMA receive request * @param NewState: new state of the DMA Request sources. * This parameter can be: ENABLE or DISABLE. * @note The DMA mode is not available for UART5 except in the STM32 * High density value line devices(STM32F10X_HD_VL). * @retval None */ void USART_DMACmd(USART_TypeDef* USARTx, uint16_t USART_DMAReq, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_USART_DMAREQ(USART_DMAReq)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the DMA transfer for selected requests by setting the DMAT and/or DMAR bits in the USART CR3 register */ USARTx->CR3 |= USART_DMAReq; } else { /* Disable the DMA transfer for selected requests by clearing the DMAT and/or DMAR bits in the USART CR3 register */ USARTx->CR3 &= (uint16_t)~USART_DMAReq; } } /** * @brief Sets the address of the USART node. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param USART_Address: Indicates the address of the USART node. * @retval None */ void USART_SetAddress(USART_TypeDef* USARTx, uint8_t USART_Address) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_USART_ADDRESS(USART_Address)); /* Clear the USART address */ USARTx->CR2 &= CR2_Address_Mask; /* Set the USART address node */ USARTx->CR2 |= USART_Address; } /** * @brief Selects the USART WakeUp method. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param USART_WakeUp: specifies the USART wakeup method. * This parameter can be one of the following values: * @arg USART_WakeUp_IdleLine: WakeUp by an idle line detection * @arg USART_WakeUp_AddressMark: WakeUp by an address mark * @retval None */ void USART_WakeUpConfig(USART_TypeDef* USARTx, uint16_t USART_WakeUp) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_USART_WAKEUP(USART_WakeUp)); USARTx->CR1 &= CR1_WAKE_Mask; USARTx->CR1 |= USART_WakeUp; } /** * @brief Determines if the USART is in mute mode or not. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param NewState: new state of the USART mute mode. * This parameter can be: ENABLE or DISABLE. * @retval None */ void USART_ReceiverWakeUpCmd(USART_TypeDef* USARTx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the USART mute mode by setting the RWU bit in the CR1 register */ USARTx->CR1 |= CR1_RWU_Set; } else { /* Disable the USART mute mode by clearing the RWU bit in the CR1 register */ USARTx->CR1 &= CR1_RWU_Reset; } } /** * @brief Sets the USART LIN Break detection length. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param USART_LINBreakDetectLength: specifies the LIN break detection length. * This parameter can be one of the following values: * @arg USART_LINBreakDetectLength_10b: 10-bit break detection * @arg USART_LINBreakDetectLength_11b: 11-bit break detection * @retval None */ void USART_LINBreakDetectLengthConfig(USART_TypeDef* USARTx, uint16_t USART_LINBreakDetectLength) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_USART_LIN_BREAK_DETECT_LENGTH(USART_LINBreakDetectLength)); USARTx->CR2 &= CR2_LBDL_Mask; USARTx->CR2 |= USART_LINBreakDetectLength; } /** * @brief Enables or disables the USART’s LIN mode. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param NewState: new state of the USART LIN mode. * This parameter can be: ENABLE or DISABLE. * @retval None */ void USART_LINCmd(USART_TypeDef* USARTx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the LIN mode by setting the LINEN bit in the CR2 register */ USARTx->CR2 |= CR2_LINEN_Set; } else { /* Disable the LIN mode by clearing the LINEN bit in the CR2 register */ USARTx->CR2 &= CR2_LINEN_Reset; } } /** * @brief Transmits single data through the USARTx peripheral. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param Data: the data to transmit. * @retval None */ void USART_SendData(USART_TypeDef* USARTx, uint16_t Data) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_USART_DATA(Data)); /* Transmit Data */ USARTx->DR = (Data & (uint16_t)0x01FF); } /** * @brief Returns the most recent received data by the USARTx peripheral. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @retval The received data. */ uint16_t USART_ReceiveData(USART_TypeDef* USARTx) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); /* Receive Data */ return (uint16_t)(USARTx->DR & (uint16_t)0x01FF); } /** * @brief Transmits break characters. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @retval None */ void USART_SendBreak(USART_TypeDef* USARTx) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); /* Send break characters */ USARTx->CR1 |= CR1_SBK_Set; } /** * @brief Sets the specified USART guard time. * @param USARTx: where x can be 1, 2 or 3 to select the USART peripheral. * @param USART_GuardTime: specifies the guard time. * @note The guard time bits are not available for UART4 and UART5. * @retval None */ void USART_SetGuardTime(USART_TypeDef* USARTx, uint8_t USART_GuardTime) { /* Check the parameters */ assert_param(IS_USART_123_PERIPH(USARTx)); /* Clear the USART Guard time */ USARTx->GTPR &= GTPR_LSB_Mask; /* Set the USART guard time */ USARTx->GTPR |= (uint16_t)((uint16_t)USART_GuardTime << 0x08); } /** * @brief Sets the system clock prescaler. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param USART_Prescaler: specifies the prescaler clock. * @note The function is used for IrDA mode with UART4 and UART5. * @retval None */ void USART_SetPrescaler(USART_TypeDef* USARTx, uint8_t USART_Prescaler) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); /* Clear the USART prescaler */ USARTx->GTPR &= GTPR_MSB_Mask; /* Set the USART prescaler */ USARTx->GTPR |= USART_Prescaler; } /** * @brief Enables or disables the USART’s Smart Card mode. * @param USARTx: where x can be 1, 2 or 3 to select the USART peripheral. * @param NewState: new state of the Smart Card mode. * This parameter can be: ENABLE or DISABLE. * @note The Smart Card mode is not available for UART4 and UART5. * @retval None */ void USART_SmartCardCmd(USART_TypeDef* USARTx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_USART_123_PERIPH(USARTx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the SC mode by setting the SCEN bit in the CR3 register */ USARTx->CR3 |= CR3_SCEN_Set; } else { /* Disable the SC mode by clearing the SCEN bit in the CR3 register */ USARTx->CR3 &= CR3_SCEN_Reset; } } /** * @brief Enables or disables NACK transmission. * @param USARTx: where x can be 1, 2 or 3 to select the USART peripheral. * @param NewState: new state of the NACK transmission. * This parameter can be: ENABLE or DISABLE. * @note The Smart Card mode is not available for UART4 and UART5. * @retval None */ void USART_SmartCardNACKCmd(USART_TypeDef* USARTx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_USART_123_PERIPH(USARTx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the NACK transmission by setting the NACK bit in the CR3 register */ USARTx->CR3 |= CR3_NACK_Set; } else { /* Disable the NACK transmission by clearing the NACK bit in the CR3 register */ USARTx->CR3 &= CR3_NACK_Reset; } } /** * @brief Enables or disables the USART’s Half Duplex communication. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param NewState: new state of the USART Communication. * This parameter can be: ENABLE or DISABLE. * @retval None */ void USART_HalfDuplexCmd(USART_TypeDef* USARTx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */ USARTx->CR3 |= CR3_HDSEL_Set; } else { /* Disable the Half-Duplex mode by clearing the HDSEL bit in the CR3 register */ USARTx->CR3 &= CR3_HDSEL_Reset; } } /** * @brief Enables or disables the USART's 8x oversampling mode. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param NewState: new state of the USART one bit sampling method. * This parameter can be: ENABLE or DISABLE. * @note * This function has to be called before calling USART_Init() * function in order to have correct baudrate Divider value. * @retval None */ void USART_OverSampling8Cmd(USART_TypeDef* USARTx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the 8x Oversampling mode by setting the OVER8 bit in the CR1 register */ USARTx->CR1 |= CR1_OVER8_Set; } else { /* Disable the 8x Oversampling mode by clearing the OVER8 bit in the CR1 register */ USARTx->CR1 &= CR1_OVER8_Reset; } } /** * @brief Enables or disables the USART's one bit sampling method. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param NewState: new state of the USART one bit sampling method. * This parameter can be: ENABLE or DISABLE. * @retval None */ void USART_OneBitMethodCmd(USART_TypeDef* USARTx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the one bit method by setting the ONEBITE bit in the CR3 register */ USARTx->CR3 |= CR3_ONEBITE_Set; } else { /* Disable tthe one bit method by clearing the ONEBITE bit in the CR3 register */ USARTx->CR3 &= CR3_ONEBITE_Reset; } } /** * @brief Configures the USART's IrDA interface. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param USART_IrDAMode: specifies the IrDA mode. * This parameter can be one of the following values: * @arg USART_IrDAMode_LowPower * @arg USART_IrDAMode_Normal * @retval None */ void USART_IrDAConfig(USART_TypeDef* USARTx, uint16_t USART_IrDAMode) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_USART_IRDA_MODE(USART_IrDAMode)); USARTx->CR3 &= CR3_IRLP_Mask; USARTx->CR3 |= USART_IrDAMode; } /** * @brief Enables or disables the USART's IrDA interface. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param NewState: new state of the IrDA mode. * This parameter can be: ENABLE or DISABLE. * @retval None */ void USART_IrDACmd(USART_TypeDef* USARTx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the IrDA mode by setting the IREN bit in the CR3 register */ USARTx->CR3 |= CR3_IREN_Set; } else { /* Disable the IrDA mode by clearing the IREN bit in the CR3 register */ USARTx->CR3 &= CR3_IREN_Reset; } } /** * @brief Checks whether the specified USART flag is set or not. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param USART_FLAG: specifies the flag to check. * This parameter can be one of the following values: * @arg USART_FLAG_CTS: CTS Change flag (not available for UART4 and UART5) * @arg USART_FLAG_LBD: LIN Break detection flag * @arg USART_FLAG_TXE: Transmit data register empty flag * @arg USART_FLAG_TC: Transmission Complete flag * @arg USART_FLAG_RXNE: Receive data register not empty flag * @arg USART_FLAG_IDLE: Idle Line detection flag * @arg USART_FLAG_ORE: OverRun Error flag * @arg USART_FLAG_NE: Noise Error flag * @arg USART_FLAG_FE: Framing Error flag * @arg USART_FLAG_PE: Parity Error flag * @retval The new state of USART_FLAG (SET or RESET). */ FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG) { FlagStatus bitstatus = RESET; /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_USART_FLAG(USART_FLAG)); /* The CTS flag is not available for UART4 and UART5 */ if (USART_FLAG == USART_FLAG_CTS) { assert_param(IS_USART_123_PERIPH(USARTx)); } if ((USARTx->SR & USART_FLAG) != (uint16_t)RESET) { bitstatus = SET; } else { bitstatus = RESET; } return bitstatus; } /** * @brief Clears the USARTx's pending flags. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param USART_FLAG: specifies the flag to clear. * This parameter can be any combination of the following values: * @arg USART_FLAG_CTS: CTS Change flag (not available for UART4 and UART5). * @arg USART_FLAG_LBD: LIN Break detection flag. * @arg USART_FLAG_TC: Transmission Complete flag. * @arg USART_FLAG_RXNE: Receive data register not empty flag. * * @note * - PE (Parity error), FE (Framing error), NE (Noise error), ORE (OverRun * error) and IDLE (Idle line detected) flags are cleared by software * sequence: a read operation to USART_SR register (USART_GetFlagStatus()) * followed by a read operation to USART_DR register (USART_ReceiveData()). * - RXNE flag can be also cleared by a read to the USART_DR register * (USART_ReceiveData()). * - TC flag can be also cleared by software sequence: a read operation to * USART_SR register (USART_GetFlagStatus()) followed by a write operation * to USART_DR register (USART_SendData()). * - TXE flag is cleared only by a write to the USART_DR register * (USART_SendData()). * @retval None */ void USART_ClearFlag(USART_TypeDef* USARTx, uint16_t USART_FLAG) { /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_USART_CLEAR_FLAG(USART_FLAG)); /* The CTS flag is not available for UART4 and UART5 */ if ((USART_FLAG & USART_FLAG_CTS) == USART_FLAG_CTS) { assert_param(IS_USART_123_PERIPH(USARTx)); } USARTx->SR = (uint16_t)~USART_FLAG; } /** * @brief Checks whether the specified USART interrupt has occurred or not. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param USART_IT: specifies the USART interrupt source to check. * This parameter can be one of the following values: * @arg USART_IT_CTS: CTS change interrupt (not available for UART4 and UART5) * @arg USART_IT_LBD: LIN Break detection interrupt * @arg USART_IT_TXE: Tansmit Data Register empty interrupt * @arg USART_IT_TC: Transmission complete interrupt * @arg USART_IT_RXNE: Receive Data register not empty interrupt * @arg USART_IT_IDLE: Idle line detection interrupt * @arg USART_IT_ORE: OverRun Error interrupt * @arg USART_IT_NE: Noise Error interrupt * @arg USART_IT_FE: Framing Error interrupt * @arg USART_IT_PE: Parity Error interrupt * @retval The new state of USART_IT (SET or RESET). */ ITStatus USART_GetITStatus(USART_TypeDef* USARTx, uint16_t USART_IT) { uint32_t bitpos = 0x00, itmask = 0x00, usartreg = 0x00; ITStatus bitstatus = RESET; /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_USART_GET_IT(USART_IT)); /* The CTS interrupt is not available for UART4 and UART5 */ if (USART_IT == USART_IT_CTS) { assert_param(IS_USART_123_PERIPH(USARTx)); } /* Get the USART register index */ usartreg = (((uint8_t)USART_IT) >> 0x05); /* Get the interrupt position */ itmask = USART_IT & IT_Mask; itmask = (uint32_t)0x01 << itmask; if (usartreg == 0x01) /* The IT is in CR1 register */ { itmask &= USARTx->CR1; } else if (usartreg == 0x02) /* The IT is in CR2 register */ { itmask &= USARTx->CR2; } else /* The IT is in CR3 register */ { itmask &= USARTx->CR3; } bitpos = USART_IT >> 0x08; bitpos = (uint32_t)0x01 << bitpos; bitpos &= USARTx->SR; if ((itmask != (uint16_t)RESET)&&(bitpos != (uint16_t)RESET)) { bitstatus = SET; } else { bitstatus = RESET; } return bitstatus; } /** * @brief Clears the USARTx's interrupt pending bits. * @param USARTx: Select the USART or the UART peripheral. * This parameter can be one of the following values: * USART1, USART2, USART3, UART4 or UART5. * @param USART_IT: specifies the interrupt pending bit to clear. * This parameter can be one of the following values: * @arg USART_IT_CTS: CTS change interrupt (not available for UART4 and UART5) * @arg USART_IT_LBD: LIN Break detection interrupt * @arg USART_IT_TC: Transmission complete interrupt. * @arg USART_IT_RXNE: Receive Data register not empty interrupt. * * @note * - PE (Parity error), FE (Framing error), NE (Noise error), ORE (OverRun * error) and IDLE (Idle line detected) pending bits are cleared by * software sequence: a read operation to USART_SR register * (USART_GetITStatus()) followed by a read operation to USART_DR register * (USART_ReceiveData()). * - RXNE pending bit can be also cleared by a read to the USART_DR register * (USART_ReceiveData()). * - TC pending bit can be also cleared by software sequence: a read * operation to USART_SR register (USART_GetITStatus()) followed by a write * operation to USART_DR register (USART_SendData()). * - TXE pending bit is cleared only by a write to the USART_DR register * (USART_SendData()). * @retval None */ void USART_ClearITPendingBit(USART_TypeDef* USARTx, uint16_t USART_IT) { uint16_t bitpos = 0x00, itmask = 0x00; /* Check the parameters */ assert_param(IS_USART_ALL_PERIPH(USARTx)); assert_param(IS_USART_CLEAR_IT(USART_IT)); /* The CTS interrupt is not available for UART4 and UART5 */ if (USART_IT == USART_IT_CTS) { assert_param(IS_USART_123_PERIPH(USARTx)); } bitpos = USART_IT >> 0x08; itmask = ((uint16_t)0x01 << (uint16_t)bitpos); USARTx->SR = (uint16_t)~itmask; } /** * @} */ /** * @} */ /** * @} */ /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/教我这个代码怎么用
最新发布
11-17
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值