1、 概述
LCA(Least Common Ancestors),即最近公共祖先,是指这样一个问题:在有根树中,找出某两个结点u和v最近的公共祖先(另一种说法,离树根最远的公共祖先)。 RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值。这两个问题是在实际应用中经常遇到的问题,本文介绍了当前解决这两种问题的比较高效的算法。
2、 RMQ算法
对于该问题,最容易想到的解决方案是遍历,复杂度是O(n)。但当数据量非常大且查询很频繁时,该算法也许会存在问题。
本节介绍了一种比较高效的在线算法(ST算法)解决这个问题。所谓在线算法,是指用户每输入一个查询便马上处理一个查询。该算法一般用较长的时间做预处理,待信息充足以后便可以用较少的时间回答每个查询。ST(Sparse Table)算法是一个非常有名的在线处理RMQ问题的算法,它可以在O(nlogn)时间内进行预处理,然后在O(1)时间内回答每个查询。
首先是预处理,用动态规划(DP)解决。设A[i]是要求区间最值的数列,F[i, j]表示从第i个数起连续2^j个数中的最大值。例如数列3 2 4 5 6 8 1 2 9 7,F[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。 F[1,2]=5,F[1,3]=8,F[2,0]=2,F[2,1]=4……从这里可以看出F[i,0]其实就等于A[i]。这样,DP的状态、初值都已经有了,剩下的就是状态转移方程。我们把F[i,j]平均分成两段(因为f[i,j]一定是偶数个数字),从i到i+2^(j-1)-1为一段,i+2^(j-1)到i+2^j-1为一段(长度都为2^(j-1))。用上例说明,当i=1,j=3时就是3,2,4,5 和 6,8,1,2这两段。F[i,j]就是这两段的最大值中的最大值。于是我们得到了动态规划方程F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])。
然后是查询。取k=[log2(j-i+1)],则有:RMQ(A, i, j)=min{F[i,k],F[j-2^k+1,k]}。 举例说明,要求区间[2,8]的最大值,就要把它分成[2,5]和[5,8]两个区间,因为这两个区间的最大值我们可以直接由f[2,2]和f[5,2]得到。
算法伪代码:
//初始化
INIT_RMQ
//max[i][j]中存的是重j开始的2^i个数据中的最大值,最小值类似,num中存有数组的值
for i : 1 to n
max[0][i] = num[i]
for i : 1 to log(n)/log(2)
for j : 1 to (n+1-2^i)
max[i][j] = MAX(max[i-1][j], max[i-1][j+2^(i-1)]
//查询
RMQ(i, j)
k = log(j-i+1) / log(2)
return MAX(max[k][i], max[k][j-2^k+1])
当然,该问题也可以用线段树(也叫区间树)解决,算法复杂度为:O(N)~O(logN),具体可阅读这篇文章:《《数据结构之线段树》》
3、 LCA算法
对于该问题,最容易想到的算法是分别从节点u和v回溯到根节点,获取u和v到根节点的路径P1,P2,其中P1和P2可以看成两条单链表,这就转换成常见的一道面试题:【判断两个单链表是否相交,如果相交,给出相交的第一个点。】。该算法总的复杂度是O(n)(其中n是树节点个数)。
本节介绍了两种比较高效的算法解决这个问题,其中一个是在线算法(DFS+ST),另一个是离线算法(Tarjan算法)。
在线算法DFS+ST描述(思想是:将树看成一个无向图,u和v的公共祖先一定在u与v之间的最短路径上):
(1)DFS:从树T的根开始,进行深度优先遍历(将树T看成一个无向图),并记录下每次到达的顶点。第一个的结点是root(T),每经过一条边都记录它的端点。由于每条边恰好经过2次,因此一共记录了2n-1个结点,用E[1, … , 2n-1]来表示。
(2)计算R:用R[i]表示E数组中第一个值为i的元素下标,即如果R[u] < R[v]时,DFS访问的顺序是E[R[u], R[u]+1, …, R[v]]。虽然其中包含u的后代,但深度最小的还是u与v的公共祖先。
(3)RMQ:当R[u] ≥ R[v]时,LCA[T, u, v] = RMQ(L, R[v], R[u]);否则LCA[T, u, v] = RMQ(L, R[u], R[v]),计算RMQ。
由于RMQ中使用的ST算法是在线算法,所以这个算法也是在线算法。
【举例说明】
T=
LCA(u)
{
Make-Set(u)
ancestor[Find-Set(u)]=u
对于u的每一个孩子v
{
LCA(v)
Union(u,v)
ancestor[Find-Set(u)]=u
}
checked[u]=true
对于每个(u,v)属于P // (u,v)是被询问的点对
{
if checked[v]=true
then {
回答u和v的最近公共祖先为ancestor[Find-Set(v)]
}
}
}
根据实现算法可以看出,只有当某一棵子树全部遍历处理完成后,才将该子树的根节点标记为黑色(初始化是白色),假设程序按上面的树形结构进行遍历,首先从节点1开始,然后递归处理根为2的子树,当子树2处理完毕后,节点2, 5, 6均为黑色;接着要回溯处理3子树,首先被染黑的是节点7(因为节点7作为叶子不用深搜,直接处理),接着节点7就会查看所有询问(7, x)的节点对,假如存在(7, 5),因为节点5已经被染黑,所以就可以断定(7, 5)的最近公共祖先就是find(5).ancestor,即节点1(因为2子树处理完毕后,子树2和节点1进行了union,find(5)返回了合并后的树的根1,此时树根的ancestor的值就是1)。有人会问如果没有(7, 5),而是有(5, 7)询问对怎么处理呢? 我们可以在程序初始化的时候做个技巧,将询问对(a, b)和(b, a)全部存储,这样就能保证完整性。
4、 总结
LCA和RMQ问题是两个非常基本的问题,很多复杂的问题都可以转化这两个问题解决,这两个问题在ACM编程竞赛中遇到的尤其多。这两个问题的解决方法中用到很多非常基本的数据结构和算法,包括并查集,深度优先遍历,动态规划等。