The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.
A binary search tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
Given any two nodes in a BST, you are supposed to find their LCA.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the BST, respectively. In the second line, N distinct integers are given as the preorder traversal sequence of the BST. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.
Output Specification:
For each given pair of U and V, print in a line LCA of U and V is A. if the LCA is found and A is the key. But if A is one of U and V, print X is an ancestor of Y. where X is A and Y is the other node. If U or V is not found in the BST, print in a line ERROR: U is not found. or ERROR: V is not found. or ERROR: U and V are not found..
Sample Input:
6 8
6 3 1 2 5 4 8 7
2 5
8 7
1 9
12 -3
0 8
99 99
Sample Output:
LCA of 2 and 5 is 3.
8 is an ancestor of 7.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.
这题是考搜索二叉树(查找二叉树bst),根据搜索二叉树的特点可知道中序排序是从小到大的排序,现在知道了前序排序,和中序排序,那么就可以建立一颗树
然后把符合条件的俩个点,带入从上到下的树来查找
具体代码体现
#include<iostream>
#include<cstdio>
#include<string>
#include<algorithm>
#include<map>
#include<vector>
using namespace std;
typedef struct node;
typedef node *bst;
struct node
{
int val;
bst L;
bst R;
};
int n, m;
vector<int>p;
vector<int>mid;
void build(bst &root, int l1, int r1, int l2, int r2)
{
if (l1>r1 || l2>r2) return;
int pos = l2;
while (mid[pos] != p[l1]) {
pos++;
}
root = new node;
root->val = p[l1];
root->L = NULL;
root->R = NULL;
build(root->L, l1 + 1, l1 + pos - l2, l2, pos - 1);
build(root->R, l1 + pos - l2 + 1,r1, pos + 1, r2);
}
void print(bst root)
{
if (root) {
cout << root->val << endl;
print(root->L);
print(root->R);
}
}
bst findth(bst root,int u,int v)
{
if ((u <= root->val&&v >= root->val) || (u >= root->val&&v <= root->val))
return root;
else {
if (u < root->val&&v < root->val) findth(root->L, u, v);
else if (u > root->val&&v > root->val) findth(root->R, u, v);
}
}
int main()
{
scanf("%d %d", &n, &m);
map<int, bool> mp;
for (int i = 0;i < m;i++) {
int x;
scanf("%d", &x);
p.push_back(x);
mp[x] = true;
}
mid = p;
sort(mid.begin(), mid.end());
bst root;
build(root, 0, m - 1, 0, m - 1);
for (int i = 0;i < n;i++) {
int u, v;
scanf("%d %d", &u, &v);
if(!mp[u]&&!mp[v]) printf("ERROR: %d and %d are not found.\n", u, v);
else if(!mp[u]) printf("ERROR: %d is not found.\n", u);
else if(!mp[v]) printf("ERROR: %d is not found.\n", v);
else {
bst t = findth(root, u, v);
if (t->val == u) printf("%d is an ancestor of %d.\n", u, v);
else if (t->val == v) printf("%d is an ancestor of %d.\n", v, u);
else printf("LCA of %d and %d is %d.\n", u, v, t->val);
}
}
return 0;
}

本文介绍如何在二叉搜索树中寻找两个节点的最近公共祖先(LCA),利用二叉搜索树特性进行前序遍历序列分析,构建树结构并实现LCA查询算法。
2559

被折叠的 条评论
为什么被折叠?



