/*
https://vjudge.net/problem/HihoCoder-1483
题意:给出n个数,然后定义一个v(l,r)为下标区间[l,r]中相同的点对数,
如对于1,1,1这个序列来说,v(1,2)=1,v(1,3) =3,v(1,1)=0。
现在要求所有n*(n+1)/2个区间的价值第k小的是多少。
二分+尺取法
*/
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <cmath>
#include <stack>
#include <string>
#include <sstream>
#include <map>
#include <set>
#define pi acos(-1.0)
#define LL long long
#define ULL unsigned long long
#define inf 0x3f3f3f3f
#define INF 1e18
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
using namespace std;
typedef pair<int, int> P;
const double eps = 1e-10;
const int maxn = 1e6 + 5;
const int N = 1e4 + 5;
const int mod = 1e8;
int T, n;
LL k;
int a[maxn], c[maxn];
map<int, int>mp;
int judge(LL x)
{
LL sum = 0, cnt = 0; // sum记录相同对数少于x的区间个数
int l = 1;
for (int i = 1; i <= n; i++)
c[i] = 0;
for (int r = 1; r <= n; r++){ //c[i]记录[l,r]中,数i有多少个
sum += c[a[r]]; // 区间加上数a[r]后,sum += c[a[r]]
c[a[r]]++; // 然后区间内 c[a[r]]的个数加1
while (sum > x){ // 如果此时区间对数大于x
c[a[l]]--; // 尺取法,将左边界l一点一点右移
sum -= c[a[l]]; // 对数减去 c[a[l]]
l++;
}
cnt += r - l + 1;
}
return cnt >= k;
}
int main(void)
{
// freopen("in.txt", "r", stdin);
cin >> T;
while (T--){
cin >> n >> k;
mp.clear();
int tot = 0, num;
for (int i = 1; i <= n; i++){
cin >> num;
if (!mp.count(num))
mp[num] = ++tot; //离散化方便后面统计
a[i] = mp[num];
}
LL l = 0, r = (LL)n*(n-1)/2;
while (l < r){
LL mid = (l + r) >> 1;
if (judge(mid)) //答案在区间里面,则更小范围的区间是[l, mid]
r = mid;
else l = mid + 1; //答案不在区间在答案在[mid+1, r]区间
}
cout << r << endl;// 此题 ans = r = l
}
return 0;
}
HihoCoder - 1483 - 区间价值
最新推荐文章于 2019-02-24 10:05:46 发布