文章标题 HDU 5584:LCM Walk(数学推导)

本文介绍了一道关于数学和算法的问题——LCMWalk。该问题要求找出所有可能的起点,使得通过特定的跳跃规则能够到达给定点。文章分析了问题的解决思路,并给出了解决方案的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LCM Walk

Description

A frog has just learned some number theory, and can’t wait to show his ability to his girlfriend.

Now the frog is sitting on a grid map of infinite rows and columns. Rows are numbered from the bottom, so are the columns. At first the frog is sitting at grid (sx,sy), and begins his journey.

To show his girlfriend his talents in math, he uses a special way of jump. If currently the frog is at the grid (x,y), first of all, he will find the minimum z that can be divided by both x and y, and jump exactly z steps to the up, or to the right. So the next possible grid will be (x+z,y), or (x,y+z).

After a finite number of steps (perhaps zero), he finally finishes at grid (ex,ey). However, he is too tired and he forgets the position of his starting grid!

It will be too stupid to check each grid one by one, so please tell the frog the number of possible starting grids that can reach (ex,ey)!

Input

First line contains an integer T, which indicates the number of test cases.

Every test case contains two integers ex and ey, which is the destination grid.

⋅ 1≤T≤1000.
⋅ 1≤ex,ey≤109.

Output

For every test case, you should output ” Case #x: y”, where x indicates the case number and counts from 1 and y is the number of possible starting grids.

Sample Input

3
6 10
6 8
2 8

Sample Output

Case #1: 1
Case #2: 2
Case #3: 3

题意:一个点(x,y),Z为这个点横纵坐标的最小公倍数,然后这个点可以往右移动,变成(x+Z,y)或者往上移动(x,y+Z),然后题目给你一个点,问能从哪些点走到这个点。
分析:由题目给我们的点(ex,ey),设其由(x,y)走过来的。先求出x,y的最大公约数a,x=a*b,y=a*c,b,互质,x,y的最小公倍数为abc,所以可以得到新的坐标abc+ab,ac,选取min(ex,ey)中的数等于ac,求出c,进而求出b,当b为整数时说明此时的点满足条件。
代码:

#include<iostream>
#include<string>
#include<cstdio>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue> 
#include<algorithm>
int Max(int a,int b){
    if (a>b)return a;
    return b;
}
int Min(int a,int b){
    if (a<b)return a;
    return b;
}
int YS(int x,int y){
    int temp;
    while (y){
        temp=x%y;
        x=y;
        y=temp;
    }
    return x;
}
int sum = 0;    
long long cnt=1;
void find_place(int x,int y){
    int ys=YS(x,y);
    if (x>y){
        int b=y/ys;
        if (x%(ys*(b+1))==0){
            cnt++;
            int c=x/(ys*(b+1));
            x=Max(ys*b,c*ys);
            y=Min(ys*b,c*ys);
            find_place(x,y);
        }
    }
    else if(x<y){
        int b=x/ys;
        if (y%(ys*(b+1))==0){
            cnt++;
            int c=y/(ys*(b+1));
            x=Min(ys*b,ys*c);
            y=Max(ys*b,ys*c);
            find_place(x,y);
        }
    }
    else {
        return ;
    }
    return ;
}
using namespace std;
int main ()
{
    int t;
    scanf ("%d",&t);
    while (t--){
        int x,y;
        sum++;
        scanf ("%d%d",&x,&y);
        cnt=1;
        find_place(x,y);
        printf ("Case #%d: %lld\n",sum,cnt);
    }       
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值