施密特正交化(Gram-Schmidt Orthogonalization)

本文详细介绍了Gram-Schmidt正交化过程,包括三维情况下的计算公式和一般线性无关向量组的处理。同时,讨论了Modified Gram-Schmidt算法在数值计算中可能出现的误差累积问题,并引出了Stable Gram-Schmidt算法作为解决方案。此外,解释了最小二乘法在寻找最后一个正交基向量时的应用。文章强调了稳定性和误差控制在正交化算法中的重要性。


注:本博文为本人阅读论文、文章后的原创笔记,未经授权不允许任何转载或商用行为,否则一经发现本人保留追责权利。有问题可留言联系,欢迎指摘批评,共同进步!!!

1 Gram-Schmidt的计算公式推导

问 :以三维情况为例,已知三个线性无关的向量 a \mathbf{a} a b \mathbf{b} b c \mathbf{c} c,如何能找到三个正交向量 α 1 \bm{\alpha_1} α1 α 2 \bm{\alpha_2} α2 α 3 \bm{\alpha_3} α3,在归一化后能形成标准正交基: e 1 \mathbf{e_1} e1 e 2 \mathbf{e_2} e2 e 3 \mathbf{e_3} e3 ?请添加图片描述

公式:

  • 对三个线性无关的向量 a \mathbf{a} a b \mathbf{b} b c \mathbf{c} c进行Gram-Schmidt正交化,所得的正交向量 α 1 \bm{\alpha_1} α1 α 2 \bm{\alpha_2} α2 α 3 \bm{\alpha_3} α3分别为:
    α 1 = a α 2 = b − b   α 1 ∣ α 1 ∣ 2   α 1 α 3 = c − c   α 1 ∣ α 1 ∣ 2   α 1 − c   α 2 ∣ α 2 ∣ 2   α 2 \begin{aligned} \bm{\alpha_1} &= \mathbf{a} \\ \bm{\alpha_2} &= \mathbf{b}-\frac{\mathbf{b} \ \bm{\alpha_1}}{|\bm{\alpha_1}|^2} \ \bm{\alpha_1} \\ \bm{\alpha_3} &= \mathbf{c}-\frac{\mathbf{c} \ \bm{\alpha_1}}{|\bm{\alpha_1}|^2} \ \bm{\alpha_1}-\frac{\mathbf{c} \ \bm{\alpha_2}}{|\bm{\alpha_2}|^2} \ \bm{\alpha_2} \end{aligned} α1α2α3=a=bα12b α1 α1=cα12c α1 α1α22c α2 α2
  • n n n个线性无关的向量 a \mathbf{a} a b \mathbf{b} b ⋯ \cdots x \mathbf{x} x进行Gram-Schmidt正交化,所得的正交向量 α 1 \bm{\alpha_1} α1 α 2 \bm{\alpha_2} α2 ⋯ \cdots α n \bm{\alpha_n} αn分别为:
    α 1 = a α 2 = b − b   α 1 ∣ α 1 ∣ 2   α 1 α 3 = c − c   α 1 ∣ α 1 ∣ 2   α 1 − c   α 2 ∣ α 2 ∣ 2   α 2 ⋮ α n = x − x   α 1 ∣ α 1 ∣ 2   α 1 − x   α 2 ∣ α 2 ∣ 2   α 2   −   ⋯ −   x   α n − 1 ∣ α n − 1 ∣ 2   α n − 1 \begin{aligned} \bm{\alpha_1} &= \mathbf{a} \\ \bm{\alpha_2} &= \mathbf{b}-\frac{\mathbf{b} \ \bm{\alpha_1}}{|\bm{\alpha_1}|^2} \ \bm{\alpha_1} \\ \bm{\alpha_3} &= \mathbf{c}-\frac{\mathbf{c} \ \bm{\alpha_1}}{|\bm{\alpha_1}|^2} \ \bm{\alpha_1}-\frac{\mathbf{c} \ \bm{\alpha_2}}{|\bm{\alpha_2}|^2} \ \bm{\alpha_2} \\ \vdots \\ \bm{\alpha_n} &= \mathbf{x}-\frac{\mathbf{x} \ \bm{\alpha_1}}{|\bm{\alpha_1}|^2} \ \bm{\alpha_1}-\frac{\mathbf{x} \ \bm{\alpha_2}}{|\bm{\alpha_2}|^2} \ \bm{\alpha_2} \ - \ \cdots - \ \frac{\mathbf{x} \ \bm{\alpha_{n-1}}}{|\bm{\alpha_{n-1}}|^2} \ \bm{\alpha_{n-1}} \end{aligned} α1α2α3αn=a=bα12b α1 α1=cα
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值