【Codeforces 711 D D. Directed Roads】 + DFS

探讨在一个由多个城镇组成的Udayland中,通过翻转部分道路方向来消除所有可能形成的有向环的问题。该问题涉及到图论中的路径与环路分析,并提出了一种有效的求解算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D. Directed Roads
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from 1 to n.

There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.

ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, …, Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.

Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.

Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.

Input
The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.

The next line contains n integers a1, a2, …, an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.

Output
Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.

Examples
input
3
2 3 1
output
6
input
4
2 1 1 1
output
8
input
5
2 4 2 5 3
output
28
Note
Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are , , initially. Number the roads 1 to 3 in this order.

The sets of roads that ZS the Coder can flip (to make them not confusing) are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns 1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.

The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.

a[i] 表示 i 到 a[i]有一条边,删除一些边,保证剩下的图无环存在,每次DFS,无非以下三种情况:
1 ) 一条链,最后一个节点连接已标记的点;贡献 : 2 ^ n (n表示节点个数)
2 ) 一个环,若干节点本身构成一个环;贡献 : 2 ^ n - 2
3)一个环 + 一条链,一部分节点构成一个环,剩下的节点构成一条链; 贡献 : 2 ^ n - 2 + 2 ^ m(n表示构成环的节点数,m表示构成链的节点数)

AC代码 :

#include<cstdio>
const int mod = 1e9 + 7;
const int K = 2e5 + 10;
typedef long long LL;
LL a[K],vis[K],o[K],s[K],N,ans,nl,pl;
void DFS(int x){
    while(!vis[x]) vis[x] = 1,o[x] = ++pl,x = a[x];
    if(o[x] <= nl) ans = (ans * s[pl - nl]) % mod; // 一条链 + 尾连了已标记的节点
    else ans = (ans * ((s[pl - o[x] + 1] - 2 + mod) % mod)) % mod,ans = (ans * s[o[x] - nl - 1]) % mod; // 环 || 环 + 链
}
int main()
{
    scanf("%lld",&N);
    for(int i = 1; i <= N; i++) scanf("%lld",&a[i]);
    ans = s[0] = 1,pl = 0;
    for(int i = 1; i <= N; i++) s[i] = (s[i - 1] * 2) % mod;
    for(int i = 1; i <= N; i++)
        if(!vis[i]){
        DFS(i),nl = pl;
        }
    printf("%lld\n",ans);
    return 0;
}
### Codeforces Round 933 Div. 3 题目概述 Codeforces Round 933 (Div. 3) 是一场面向较低评级选手的比赛,通常包含多个不同难度级别的编程挑战。这类比赛旨在帮助新手提升算法技能并熟悉竞赛环境。 #### A. 奇偶数分组 在这个问题中,给出一系列整数,目标是将这些数字分成两部分——一部分只含奇数,另一部分仅存偶数。如果可以实现这样的划分,则输出 "YES"; 否则返回 "NO"[^1]。 ```cpp #include <bits/stdc++..h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); bool has_odd = false, has_even = false; for(int i=0; i<n; ++i){ cin>>a[i]; if(a[i]%2==0)has_even=true; else has_odd=true; } cout<<(has_odd && has_even ? "YES\n":"NO\n"); } ``` 此代码片段展示了如何读取输入数据,并通过遍历数组中的每一个元素来检查是否存在至少一个奇数和一个偶数。 #### B. 数字游戏 参与者被给予了一个正整数 \(n\) 和另一个非负整数 \(k\) 。玩家的任务是从 \(n\) 开始连续减去 \(k\) ,直到结果变为零或更小为止。该过程记录下所有的中间值形成序列。询问最终得到的序列长度是多少?[未提供具体引用] ```cpp #include<bits/stdc++.++.h> using namespace std; int main(){ long long n,k; cin>>n>>k; int cnt=0; while(n>=0){ cnt++; n-=k; } cout<<cnt<<"\n"; } ``` 这段程序实现了上述逻辑,即不断减少 `n` 的值直至其变得不再大于等于零,并统计循环次数作为答案的一部分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值