给定一个 n×n 的整数矩阵。对任一给定的正整数 k<n,我们将矩阵的奇数行的元素整体向右依次平移 1、……、k、1、……、k、…… 个位置,平移空出的位置用整数 x 补。你需要计算出结果矩阵的每一列元素的和。
输入格式:
输入第一行给出 3 个正整数:n(<100)、k(<n)、x(<100),分别如题面所述。
接下来 n 行,每行给出 n 个不超过 100 的正整数,为矩阵元素的值。数字间以空格分隔。
输出格式:
在一行中输出平移后第 1 到 n 列元素的和。数字间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
7 2 99
11 87 23 67 20 75 89
37 94 27 91 63 50 11
44 38 50 26 40 26 24
73 85 63 28 62 18 68
15 83 27 97 88 25 43
23 78 98 20 30 81 99
77 36 48 59 25 34 22
输出样例:
529 481 479 263 417 342 343
样例解读
需要平移的是第 1、3、5、7 行。给定 k=2,应该将这三列顺次整体向右平移 1、2、1、2 位(如果有更多行,就应该按照 1、2、1、2、1、2 …… 这个规律顺次向右平移),左端的空位用 99 来填充。平移后的矩阵变成:
99 11 87 23 67 20 75
37 94 27 91 63 50 11
99 99 44 38 50 26 40
73 85 63 28 62 18 68
99 15 83 27 97 88 25
23 78 98 20 30 81 99
99 99 77 36 48 59 25
代码
#include<iostream>
using namespace std;
int a[103][103]= {0};
int main() {
int n,k,x,cnt=0;
cin>>n>>k>>x;
for(int i=1; i<=n; i++) {
int y=0;
if(i%2) { // 是奇数行
cnt++; // 记录此行是第几个奇数行
/* 计算此行需要向右平移多少 */
y=cnt%k;
if(y==0) y=k;
}
for(int j=1; j<=y; j++) {
a[i][j]=x;
}
for(int j=y+1; j<=n; j++) {
cin>>a[i][j];
}
for(int j=0; j<y; j++) { // 把每一行不要的元素放掉~
int m;
cin>>m;
}
}
for(int i=1; i<=n; i++) {
int sum=0;
if(i>1) cout<<" ";
for(int j=1; j<=n; j++)
sum+=a[j][i];
cout<<sum;
}
return 0;
}
注意:平移的是行,最后输出的是列之和.