Power Stations
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1899 Accepted Submission(s): 514
Special Judge
The power stations cannot work all the time. For each station there is an available time range. For example, the power station located on Town 1 may be available from the third day to the fifth day, while the power station on Town 2 may be available from the first day to the forth day. You can choose a sub-range of the available range as the working time for each station. Note that you can only choose one sub-range for each available range, that is, once the station stops working, you cannot restart it again. Of course, it is possible not to use any of them.
Now you are given all the information about the cable connection between the towns, and all the power stations’ available time. You need to find out a schedule that every town will get the electricity supply for next D days, one and only one supplier for one town at any time.
Each of the next M lines contains two integers a, b (1 <= a, b <= N), which means that Town a and Town b are connected directly. Then N lines followed, each contains two numbers si and ei, (1 <= si <= ei <= D) indicating that the available time of Town i’s power station is from the si-th day to the ei-th day (inclusive).
If the plan doesn’t exist, output one line contains “No solution” instead.
Note that the answer may not be unique. Any correct answers will be OK.
Output a blank line after each case.
3 3 5 1 2 2 3 3 1 1 5 1 5 1 5 4 4 5 1 2 2 3 3 4 4 1 1 5 1 5 1 5 1 5
1 5 0 0 0 0 No solution题目描述:
有n个城市,还有m条边(双向),每个城市都有一个发电站,如果一个发电站工作,它能够给它所在的城市和直接相邻的城市提供电力。并且要求每个城市只能由一个发电站来提供电力(即不能够被两个或以上的发电站同时覆盖)。
然后,每个城市的发电站都有一个允许工作时间 ai bj,表示发电站只能在[ai,bi]内的某个连续区间内工作(也可以一个都不选),并且只能选一个区间(即ai = 1, bi = 5, 不能选择1-2 和4-5两个区间)。
然后给你一个数字D,问你能不能安排这n个发电站的工作时间使1~D的时间区间内,每个城市在每个时间都能够被一个发电站覆盖。
可以的话输出任意一种解决方法。
n <= 60, m<= 150, D<=5
解题报告:
初看题意,是一个覆盖问题,n又很小,搜,怎么搜,DLX的精确覆盖模型。
精确覆盖:一个0,1矩阵,选择某些行,使每一列都有且仅有一个1。即用行覆盖列。
行的定义:
一共n * 16行,16就是[1,5]区间的所有小区间:
{{1, 1}, {1, 2}, {1, 3}, {1, 4}, {1, 5},
{2, 2}, {2, 3}, {2, 4}, {2, 5},
{3, 3}, {3, 4}, {3, 5},
{4, 4}, {4, 5},
{5, 5}, {0, 0}};
其中0,0表示不用。
这样第(i – 1) * 16 + j就表示第i个发电站选择小区间j时状态。
(1 <= i <= n, 1 <= j <= 16)
列的定义:
对于第(a – 1) * 16 + b行,一共有n * d + n列。
第(i – 1) * d + j列表示第i个城市的第j天 是否被这一行的状态(a发电站选择b区间)供电,
第n * d + j列为1表示这个覆盖来自第j个发电站(因为每个发电站只能用一次,所以要用额外的n列来限制,和数独那题的解法类似,由于这n列每一列只能被覆盖一次,就限制了使用次数也是1)。
这样图就建好了,套用DLX模板即可。有界的话就输出一个就好了。
AC代码:#include <cstdio> #include <cstring> #include <iostream> #include <cmath> #include <algorithm> #include <vector> #include <bitset> #include <queue> #define ll long long using namespace std; const int maxn = 60 * 20; const int maxm = 60 * 10; const int max_size = maxn * maxm; const int INF = 1e9; int L[max_size], R[max_size], U[max_size], D[max_size], CH[max_size], RH[max_size]; int S[max_size], O[max_size]; int head, size; int n, m, d, len; vector<int> G[100]; int st[100], ed[100], ans[100]; bool mat[maxn][maxm]; int move[16][2] = {{1, 1}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 2}, {2, 3}, {2, 4}, {2, 5}, {3, 3}, {3, 4}, {3, 5}, {4, 4}, {4, 5}, {5, 5}, {0, 0}}; int node(int up, int down, int left, int right) { U[size] = up, D[size] = down; L[size] = left, R[size] = right; D[up] = U[down] = R[left] = L[right] = size; return size++; } void init(int N, int M) { size = 0; head = node(0, 0, 0, 0); for (int j = 1; j <= M; ++j) { CH[j] = node(size, size, L[head], head), S[j] = 0; } for (int i = 1; i <= N; ++i) { int row = -1, k; for (int j = 1; j <= M; ++j) { if (!mat[i][j]) continue; if (row == -1) { row = node(U[CH[j]], CH[j], size, size); RH[row] = i, CH[row] = CH[j], ++S[j]; } else { k = node(U[CH[j]], CH[j], L[row], row); RH[k] = i, CH[k] = CH[j], ++S[j]; } } } } void remove(const int &c) { L[R[c]] = L[c], R[L[c]] = R[c]; for (int i = D[c]; i != c; i = D[i]) { for (int j = R[i]; j != i; j = R[j]) { U[D[j]] = U[j], D[U[j]] = D[j]; --S[CH[j]]; } } } void resume(const int &c) { for (int i = U[c]; i != c; i = U[i]) { for (int j = L[i]; j != i; j = L[j]) { ++S[CH[j]]; U[D[j]] = D[U[j]] = j; } } L[R[c]] = R[L[c]] = c; } bool dance(const int &k) { if (R[head] == head) { len = k - 1; return true; } int s = INF, c; for (int t = R[head]; t != head; t = R[t]) { if (S[t] < s) s = S[t], c = t; } remove(c); for (int i = D[c]; i != c; i = D[i]) { O[k] = RH[i]; for (int j = R[i]; j != i; j = R[j]) { remove(CH[j]); } if (dance(k + 1)) { return true; } for (int j = L[i]; j != i; j = L[j]) { resume(CH[j]); } } resume(c); return false; } int main() { int a, b; while(~scanf("%d%d%d", &n, &m, &d)) { for(int i = 1; i <= n; i++) { G[i].clear(); G[i].push_back(i); } for(int i = 0; i < m; i++) { scanf("%d%d", &a, &b); G[a].push_back(b); G[b].push_back(a); } for(int i = 1; i <= n; i++) scanf("%d%d", &st[i], &ed[i]); memset(mat, 0, sizeof(mat)); for(int i = 1; i <= n; i++) { for(int j = 0; j < 15; j++) { int x = (i - 1) * 16 + j + 1; if(move[j][0] >= st[i] && move[j][1] <= ed[i]) { for(int k = 0; k < (int) G[i].size(); k++) { int v = G[i][k]; for(int l = move[j][0]; l <= move[j][1]; l++) mat[x][(v - 1)* d + l] = 1; } mat[x][n * d + i] = 1; } } mat[(i - 1) * 16 + 16][n * d + i] = 1; } init(n * 16, n * d + n); dance(1); if(len != n) printf("No solution\n"); else { for(int i = 1; i <= len; i++) { int tmp = ((O[i] - 1) / 16) + 1; int tmp2 = O[i] - (tmp - 1) * 16 - 1; ans[tmp] = tmp2; } for(int i = 1; i <= n; i++) printf("%d %d\n", move[ans[i]][0], move[ans[i]][1]); } puts(""); } return 0; }