Easy Finding
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 16128 | Accepted: 4321 |
Description
Given a
M×
N matrix
A.
A
ij ∈ {0, 1} (0 ≤ i < M, 0 ≤ j < N), could you find some rows that let every cloumn contains and only contains one 1.
Input
There are multiple cases ended by
EOF. Test case up to 500.The first line of input is
M,
N (
M ≤ 16,
N ≤ 300). The next
M lines every line contains
N integers separated by space.
Output
For each test case, if you could find it output "Yes, I found it", otherwise output "It is impossible" per line.
Sample Input
3 3 0 1 0 0 0 1 1 0 0 4 4 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 0
Sample Output
Yes, I found it It is impossible
题意:给出一个矩阵,问是否存在一些行使得每一列有且只有一个1。
思路:Dancing Links。详见http://www.cnblogs.com/grenet/p/3145800.html
AC代码:
#include <cstdio> #include <cstring> #include <iostream> #include <cmath> #include <algorithm> #include <bitset> #include <queue> #define ll long long using namespace std; const int maxn = 6005; const int INF = 1e9; int n, m, cnt, head; int L[maxn], R[maxn], U[maxn], D[maxn], S[maxn], C[maxn], H[maxn]; inline void add_link(int i, int j){ C[++cnt] = j; S[j]++; D[cnt] = j; U[cnt] = U[j]; if(H[i]) R[cnt] = H[i], L[cnt] = L[H[i]]; else R[cnt] = L[cnt] = cnt; H[i] = cnt; U[D[cnt]] = cnt; D[U[cnt]] = cnt; R[L[cnt]] = cnt; L[R[cnt]] = cnt; } void remove(int c){ R[L[c]] = R[c]; L[R[c]] = L[c]; for(int i = D[c]; i != c; i = D[i]) for(int j = R[i]; j != i; j = R[j]) { U[D[j]] = U[j]; D[U[j]] = D[j]; S[C[j]]--; } } void resume(int c){ for(int i = U[c]; i != c; i = U[i]) for(int j = L[i]; j != i; j = L[j]) { D[U[j]] = j; U[D[j]] = j; S[C[j]]++; } L[R[c]] = R[L[c]] = c; } bool dance(){ if(R[head] == head) { puts("Yes, I found it"); return true; } int s = INF, c; for(int i = R[head]; i != head; i = R[i]) if(S[i] < s) s = S[c = i]; remove(c); for(int i = D[c]; i != c; i = D[i]) { for(int j = R[i]; j != i; j = R[j]) remove(C[j]); if(dance()) return true; for(int j = L[i]; j != i; j = L[j]) resume(C[j]); } resume(c); return false; } int main() { int c; head = 0; while(~scanf("%d%d", &n, &m)) { cnt = m; for(int i =- 0; i <= m; i++) { C[i] = U[i] = D[i] = i; L[i + 1] = i; R[i] = i + 1; S[i] = 0; } L[0] = m, R[m] = 0; for(int i = 1; i <= n; i++) { H[i] = 0; for(int j = 1; j <= m; j++) { c = getchar(); while(!isdigit(c)) c = getchar(); if(c == '1') add_link(i, j); } } if (!dance()) puts("It is impossible"); } return 0; }

本文介绍了一种使用Dancing Links算法解决特定矩阵问题的方法,该问题要求找到某些行组合,使每列恰好包含一个1。通过详细的AC代码示例,展示了如何实现这一算法。
2552

被折叠的 条评论
为什么被折叠?



