1013 Battle Over Cities

本文探讨了在战争背景下,确保城市间高速公路连通性的快速修复算法。通过图的遍历找强连通子集数量,确定需要修复的高速公路数量,以保持剩余城市的连接。使用DFS深度优先搜索算法进行求解。

It is vitally important to have all the cities connected by highways in a war. If a city is occupied by the enemy, all the highways from/toward that city are closed. We must know immediately if we need to repair any other highways to keep the rest of the cities connected. Given the map of cities which have all the remaining highways marked, you are supposed to tell the number of highways need to be repaired, quickly.

For example, if we have 3 cities and 2 highways connecting city​1​​-city​2​​ and city​1​​-city​3​​. Then if city​1​​ is occupied by the enemy, we must have 1 highway repaired, that is the highway city​2​​-city​3​​.
Input Specification:

Each input file contains one test case. Each case starts with a line containing 3 numbers N(&lt;1000)N (&lt;1000)N(<1000), MMM and KKK, which are the total number of cities, the number of remaining highways, and the number of cities to be checked, respectively. Then M lines follow, each describes a highway by 2 integers, which are the numbers of the cities the highway connects. The cities are numbered from 1 to N. Finally there is a line containing K numbers, which represent the cities we concern.

Output Specification:

For each of the K cities, output in a line the number of highways need to be repaired if that city is lost.

Sample Input:

3 2 3
1 2
1 3
1 2 3

Sample Output:

1
0
0

题解:

乍一看是最小生成树问题,但仔细分析会发现是利用图的遍历来找强连通子集数量的问题,即有 nnn 个连通子集,至少需要 n−1n-1n1 条边使他们相连,可以使用 DFS 求解


#include <iostream>
#include <cstdlib>
#include <cstring>
using namespace std;

int N,M,K,V,W;
bool road[1001][1001] = {0};
bool visit[1001];

void DFS(int i)
{
    visit[i] = true;
    for(int j=0;j<N;j++)
        if(road[i][j] == 1 && visit[j] == 0)
            DFS(j);
}

int main()
{
    cin>>N>>M>>K;
    for(int i=0;i<M;i++){
        cin>>V>>W;
        road[V-1][W-1] = road[W-1][V-1] = 1;
    }

    for(int i=0;i<K;i++){
        int cont = 0;
        memset(visit,0,sizeof(visit));
        cin>>V;
        visit[--V]=true;
        for(int j=0;j<N;j++){
            if(!visit[j]){		// 连通集判断
                DFS(j);
                cont++;
            }
        }
        cout<<cont-1<<endl;
    }
}
内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值