1004 Counting Leaves

本文介绍了一种算法,用于解决家族树中各层级叶子节点的计数问题。通过构建树形结构并利用队列进行层次遍历,可以有效地统计出家族树中每一级的无子女成员数量。

A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 0&lt;N&lt;1000&lt;N&lt;1000<N<100, the number of nodes in a tree, and M(&lt;N)M (&lt;N)M(<N), the number of non-leaf nodes. Then M lines follow, each in the format:

ID K ID[1] ID[2] … ID[K]

where ID is a two-digit number representing a given non-leaf node, KKK is the number of its children, followed by a sequence of two-digit ID’s of its children. For the sake of simplicity, let us fix the root ID to be 010101.

The input ends with NNN being 000. That case must NOT be processed.

Output Specification:

For each test case, you are supposed to count those family members who have no child for every seniority level starting from the root. The numbers must be printed in a line, separated by a space, and there must be no extra space at the end of each line.

The sample case represents a tree with only 2 nodes, where 01 is the root and 02 is its only child. Hence on the root 01 level, there is 0 leaf node; and on the next level, there is 1 leaf node. Then we should output 0 1 in a line.

Sample Input:

2 1
01 1 02

Sample Output:

0 1


解题思路:

要求输出每层的叶子结点个数,通过所给的结点关系构建树即可。由于不知道每个节点有多少个孩子,所以使用队列来存储子树节点。在确定根节点后,在遍历每一层即可,详见代码
本题的思路清晰,熟练掌握树的构建,注意细节即可;


#include <iostream>
#include <iomanip>
#include <queue>
using namespace std;

struct TreeNode {
	queue<int> child;
};

int main()
{
	int N, M;
	int visit[100] = { 0 };
	int root;
	TreeNode T[100];
	cin >> N >> M;
	for (int i = 0; i < M; i++) {
		int ID, K, temp;
		cin >> ID >> K;
		for (int j = 0; j < K; j++) {
			cin >> temp;
			T[ID].child.push(temp);		// 数组下标表示结点ID
			visit[temp]++;
		}
	}
	// 查找根节点
	for (int i = 1; i < N; i++) {		// N != 0
		if (!visit[i]) {
			root = i;
			break;
		}
	}

	if (N == 1)		// 只有一个节点的情况
		cout << "1" << endl;
	else {
		queue<int> q = T[root].child;
		cout << "0";
		while (!q.empty()) {
			int cont = 0;	// 记录叶子结点个数
			int size = q.size();
			for (int i = 0; i < size; i++) {
				int temp = q.front();
				q.pop();
				if (T[temp].child.empty())
					cont++;
				else {
					queue<int> t = T[temp].child;
					while (!t.empty()) {
						q.push(t.front());
						t.pop();
					}
				}
			}
			cout << " " << cont;
		}
	}
}
本项目构建于RASA开源架构之上,旨在实现一个具备多模态交互能力的智能对话系统。该系统的核心模块涵盖自然语言理解、语音转文本处理以及动态对话流程控制三个主要方面。 在自然语言理解层面,研究重点集中于增强连续对话中的用户目标判定效能,并运用深度神经网络技术提升关键信息提取的精确度。目标判定旨在解析用户话语背后的真实需求,从而生成恰当的反馈;信息提取则专注于从语音输入中析出具有特定意义的要素,例如个体名称、空间位置或时间节点等具体参数。深度神经网络的应用显著优化了这些功能的实现效果,相比经典算法,其能够解析更为复杂的语言结构,展现出更优的识别精度与更强的适应性。通过分层特征学习机制,这类模型可深入捕捉语言数据中隐含的语义关联。 语音转文本处理模块承担将音频信号转化为结构化文本的关键任务。该技术的持续演进大幅提高了人机语音交互的自然度与流畅性,使语音界面日益成为高效便捷的沟通渠道。 动态对话流程控制系统负责维持交互过程的连贯性与逻辑性,包括话轮转换、上下文关联维护以及基于情境的决策生成。该系统需具备处理各类非常规输入的能力,例如用户使用非规范表达或对系统指引产生歧义的情况。 本系统适用于多种实际应用场景,如客户服务支持、个性化事务协助及智能教学辅导等。通过准确识别用户需求并提供对应信息或操作响应,系统能够创造连贯顺畅的交互体验。借助深度学习的自适应特性,系统还可持续优化语言模式理解能力,逐步完善对新兴表达方式与用户偏好的适应机制。 在技术实施方面,RASA框架为系统开发提供了基础支撑。该框架专为构建对话式人工智能应用而设计,支持多语言环境并拥有活跃的技术社区。利用其内置工具集,开发者可高效实现复杂的对话逻辑设计与部署流程。 配套资料可能包含补充学习文档、实例分析报告或实践指导手册,有助于使用者深入掌握系统原理与应用方法。技术文档则详细说明了系统的安装步骤、参数配置及操作流程,确保用户能够顺利完成系统集成工作。项目主体代码及说明文件均存放于指定目录中,构成完整的解决方案体系。 总体而言,本项目整合了自然语言理解、语音信号处理与深度学习技术,致力于打造能够进行复杂对话管理、精准需求解析与高效信息提取的智能语音交互平台。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值