import torch
class LinearModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(1, 1)
def forward(self, x):
y_hat = self.linear(x)
return y_hat
model = LinearModel()
criterion = torch.nn.MSELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[2.0], [4.0], [6.0]])
for epoch in range(100):
y_hat = model(x_data)
loss = criterion(y_hat, y_data)
print(epoch, loss)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("w = ", model.linear.weight.item())
print("b = ", model.linear.bias.item())
x_test = torch.Tensor([4.0])
y_test = model(x_test)
print("y_hat = ", y_test.data)