As we know,the shape of a binary search tree is greatly related to the order of keys we insert. To be precisely:
1. insert a key k to a empty tree, then the tree become a tree with
only one node;
2. insert a key k to a nonempty tree, if k is less than the root ,insert
it to the left sub-tree;else insert k to the right sub-tree.
We call the order of keys we insert “the order of a tree”,your task is,given a oder of a tree, find the order of a tree with the least lexicographic order that generate the same tree.Two trees are the same if and only if they have the same shape.Input
There are multiple test cases in an input file. The first line of each testcase is an integer n(n <= 100,000),represent the number of nodes.The second line has n intergers,k1 to kn,represent the order of a tree.To make if more simple, k1 to kn is a sequence of 1 to n.
Output
One line with n intergers, which are the order of a tree that generate the same tree with the least lexicographic.
Sample Input
4 1 3 4 2Sample Output
1 3 2 4题意:给一个序列,构建二叉搜索树,输出树的前序遍历。
分析:用数组模拟二叉树,用数组记录二叉树前序遍历。
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int s[100010],left[100010],right[100010]; int sum[100010]; int len1,len2,num; void tree(int l,int k) { if(s[l]>=k) //左子树 { if(left[l]) tree(left[l],k); else left[l]=len2; } else //右子树 { if(right[l]) tree(right[l],k); else right[l]=len2; } } void check(int l) //树的前序遍历 { sum[num++]=s[l]; if(left[l]) //查找左子树 check(left[l]); if(right[l]) //右子树 check(right[l]); } int main() { int n,k; while(~scanf("%d",&n)) { memset(left,0,sizeof(left)); memset(right,0,sizeof(right)); len1=-1; len2=0; num=0; for(int i=0; i<n; i++) //建树 { scanf("%d",&k); if(len1==-1) //根节点 s[++len1]=k; else { s[++len2]=k; tree(len1,k); } } check(len1); //前序遍历 for(int i=0; i<num; i++) { if(i==0) printf("%d",sum[i]); else printf(" %d",sum[i]); } printf("\n"); } }
HDU - 3999 E - The order of a Tree
最新推荐文章于 2020-08-19 10:58:21 发布
博客围绕二叉搜索树展开,指出树的形状与插入键的顺序密切相关。给定树的插入顺序,需找出能生成相同形状树且字典序最小的顺序。通过数组模拟二叉树,并记录其前序遍历,最终输出该前序遍历序列。
13万+

被折叠的 条评论
为什么被折叠?



