嬴图 | LLM+Graph:大语言模型与图数据库技术的协同

前言

2022年11月以来,大语言模型席卷全球,在自然语言任务中表现卓越。尽管存在一系列伦理、安全等方面的担心,但各界对该技术的热情和关注并未减弱。

本文不谈智能伦理方面的问题,仅集中于Ulitpa嬴图在应用中的一些探索与实践,看看大模型+图技术 是如何相互辅助、互相促就的。当然,从最终的易用性和体验上来说,企业(客户)才是这两项技术在珠联璧合后的最终受益者!

01 大模型的局限性

先进的大语言模型(Large Language Model,以下简称大模型),如GPT系列,规模庞大,拥有数百甚至数千亿的参数,在许多复杂任务中展示出巨大的潜力。它们在大量的文本数据上经历了广泛的预训练(Pre-Training),这一过程会耗费大量资源和时间。 

很容易理解的是,模型的知识受限于它所训练的数据。训练数据都有一个截止日期(Cutoff Date)。例如,GPT-3.5是使用截止到2021年9月的数据进行训练的,GPT-4目前仅涵盖至2022年1月。跟进实时知识和全球事件对大模型来说是很大的挑战,而且成本相当可观。 

图片
图:ChatGPT截图

比起承认你提出的问题不在知识库中更糟的是,大模型会给出听起来十分肯定,但实际上并非事实的回应,也就是所谓的幻觉(Hallucination)。与此同时,大模型作为黑盒模型,它们以参数的形式隐式地表示知识。由于大模型生成的结果中没有包含任何来源或参考,我们很难解释或验证其可信度。这严重影响了大模型的应用,尤其是在医疗诊断、金融咨询和法律判断等高风险的场景中。另一个挑战在于,大模型是为了一般用途而训练的,企业专有、保密或敏感的未公开数据并不在它们的知识范围内。 

一种改善大模型性能的简单方法是提示工程(Prompt Engineering)。通过在提问时提供清晰的指示和背景信息,大模型可以生成更准确的回应。然而,为了获得最佳结果,这个过程可能需要一定的写作技巧和反复迭代,同时伴随着因文本长度增加而上升的成本。

图片

02 检索增强生成和微调

在将大模型引入业务环境时,出现了两种显著的技术:检索增强生成(Retrieval Augmented Generation)和微调(Fine-Tuning)。 

检索增强生成是一种将大模型与外部知识库检索相结合的一种框架。它从特定的外部数据库(区别于大模型的内部知识库)中检索出相关的文档,然后将这些文档与用户的输入一起传递给预训练的大模型,生成最终结果。 

典型的检索增强生成应用的策略是:

  • 将知识库中的文档按策略切分成较短的片段,为这些文本片段分别生成向量表示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值