一、DWS层与DWM设计
1、思路
之前已经进行分流
但只需要一些指标进行实时计算,将这些指标以主题宽表的形式输出
2、需求
访客、商品、地区、关键词四层的需求(可视化大屏展示、多维分析)


3、DWS层定位
轻度聚合、主题中管理
二、DWS层-访客主题宽表的计算

DWS表主要包含维度表和事实表
维度表主要包括渠道、地区、版本、新老用户等
事实表主要包括PV、UV、跳出次数、进入页面数(session_count)、连续访问时长等
1、需求分析
合并接收到的数据流,按时间窗口聚合,并将聚合结果写入数据库
2、实现
(1)读取kafka各个流的数据
page_log、dwm_uv、dwm_jump_user跳出用户
(2)合并读取到的数据流

本文介绍如何在DWS层设计主题宽表,涵盖访客、商品、地区和关键词四大主题的数据处理流程,包括数据流合并、窗口聚合、维度关联及ClickHouse数据库写入。
最低0.47元/天 解锁文章
1317

被折叠的 条评论
为什么被折叠?



