关键点定位 之前的方法检测到的极值点是离散空间的极值点,下面通过拟合三维二次函数来精确确定关键点的位置和尺度,同时去除低对比度的关键点和不稳定的边缘响应点(因为DoG算子会产生较强的边缘响应), 以增强匹配稳定性、提高抗噪声能力。 离散空间的极值点并不是真正的极值点,下图显示了二维函数离散空间得到的极值点与连续空间极值点的差别。利用已知的离散空间点插值得到的连续空间极值点的方法叫做子像素插值(Sub-pixel Interpolation)。 候选特征点x, 其偏移量定义为 Δ \Delta