如题:http://poj.org/problem?id=3126
Description

— It is a matter of security to change such things every now and then, to keep the enemy in the dark.
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know!
— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime!
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.
Now, the minister of finance, who had been eavesdropping, intervened.
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
— Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you?
— In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.
1033The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.
1733
3733
3739
3779
8779
8179
Input
Output
Sample Input
3 1033 8179 1373 8017 1033 1033
Sample Output
6 7 0
题目给出2个4位素数,要求求出经过几次变换从左成右边的素数,要求变换次数最少,变换规则:从左边素数开始,每次变换一位,变换后还得是素数,直至变成右边。
求最小步数,简单BFS就可,关键是搜索状态使用素数筛优化一下,O(nloglogn)的复杂度求出4位所有素数。改变状态时只需if(is_prime[x])即可。
32ms AC
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
struct node
{
int x,step;
};
int is_prime[10000];
void seive()
{
int i,j;
int p=0;
for(i=0;i<=9999;i++)
is_prime[i]=1;
is_prime[0]=is_prime[1]=0;
for(i=2;i<=9999;i++)
if(is_prime[i])
{
for(j=2*i;j<=9999;j+=i)
is_prime[j]=0;
}
}
int BFS(int a,int b)
{
int vis[10000]={0};
queue<node>q;
node t;
t.x=a;
t.step=0;
q.push(t);
vis[t.x]=1;
while(!q.empty())
{
node p=q.front();
if(p.x==b)
return p.step;
q.pop();
int i;
int d=p.x%10;
int c=(p.x/10)%10;
int b=(p.x/100)%10;
int a=p.x/1000;
for(i=0;i<=9;i++)
{
if(is_prime[a*1000+i*100+c*10+d]&&!vis[a*1000+i*100+c*10+d])
{
t.x=a*1000+i*100+c*10+d;
t.step=p.step+1;
vis[a*1000+i*100+c*10+d]=1;
q.push(t);
}
if(is_prime[a*1000+b*100+i*10+d]&&!vis[a*1000+b*100+i*10+d])
{
t.x=a*1000+b*100+i*10+d;
t.step=p.step+1;
vis[a*1000+b*100+i*10+d]=1;
q.push(t);
}
if(is_prime[a*1000+b*100+c*10+i]&&!vis[a*1000+b*100+c*10+i])
{
t.x=a*1000+b*100+c*10+i;
t.step=p.step+1;
vis[a*1000+b*100+c*10+i]=1;
q.push(t);
}
if(i!=0)
{
if(is_prime[i*1000+b*100+c*10+d]&&!vis[i*1000+b*100+c*10+d])
{
t.x=i*1000+b*100+c*10+d;
t.step=p.step+1;
vis[i*1000+b*100+c*10+d]=1;
q.push(t);
}
}
}
}
return -1;
}
int main()
{
int a,b;
int T;
seive();
scanf("%d",&T);
while(T--)
{
cin>>a>>b;
int res=BFS(a,b);
if(res==-1)
printf("Impossible\n");
else
printf("%d\n",res);
}
return 0;
}