用Sklearn和Statsmodels来做linear_regression和Logistic_regression注意事项

用Sklearn和Statsmodels来做linear_regression和Logistic_regression注意事项,区别。主要在于 intercept 项,和 regularization。

X = np.array([-1, 0, 1])  # 自变量
Y = np.array([-2, 0, 5])  # 因变量

一、Linear regression 的截距项

又叫 intercept, constant, bias

  1. 使用 statsmodels 进行线性回归时,
    (1) 通常需要手动添加常数项(即截距),因为 statsmodels 的 OLS 默认不包括截距
    。这可以通过使用 statsmodels.tools.add_constant 函数来实现。例如,如果你有一个因变量 y 和一个自变量 X,你可以这样添加常数项:
import statsmodels.api as sm

X = sm.add_constant(X)  # 添加常数项
model = sm.OLS(Y, X).fit()

这样,X 中就会包含一个值全为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值