print(__doc__)
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
diabetes = datasets.load_diabetes()
diabetes_X = diabetes.data[:, np.newaxis, 2]
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]
lr = linear_model.LinearRegression()
lr.fit(diabetes_X_train, diabetes_y_train)
diabetes_y_pred = lr.predict(diabetes_X_test)
print("Coefficients:\n", lr.coef_)
print("Mean squared error: %.2f" %mean_squared_error(diabetes_y_test, diabetes_y_pred ))
print("Variance score: %.2f"%r2_score(diabetes_y_test, diabetes_y_pred))
plt.scatter(diabetes_X_test, diabetes_y_test, color = 'black')
plt.plot(diabetes_X_test, diabetes_y_pred, color = 'blue', linewidth = 3)
plt.xticks(())
plt.yticks(())
plt.show()
结果:
Automatically created module for IPython interactive environment
Coefficients:
[938.23786125]
Mean squared error: 2548.07
Variance score: 0.47
mean_squared_error
r2_score
np.newaxis
Logistic Regression参数说明
参考自:https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py