Object Detection based on Region Decomposition and Assembly
AAAI2019 | 基于区域分解集成的目标检测 论文解读
作者 | 文永亮
学校 | 哈尔滨工业大学(深圳)
研究方向 | 目标检测、GAN
推荐理由:
这是一篇发表于AAAI2019的paper,文章提出了一种R-DAD的方法来对RCNN系列的目标检测方法进行改进。
研究动机:
目前主流的目标检测算法分为1 stage和2 stage的,而2 stage的目标检测方法以Faster-RCNN为代表是需要RPN(Region Proposals Network)生成RoI(Region of Interests感兴趣区域)的,文章认为正是因为被遮挡了的或者不精确的Region Proposals导致目标检测算法的不准确。作者的想法动机其实很简单,就是假如一辆车的左边被人遮挡了,那么这辆车的右边带来的信息其实才是更可信的。基于这个想法,文章提出R-DAD(Region Decomposition and Assembly Detector),即区域分解组装检测器,来改善生成的Region Proposals。
R-DAD的网络结构: