import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('smallpig.jpg')
kernel = np.ones((5,5), np.float32)/25
dst = cv2.filter2D(img, -1, kernel)
cv2.imshow('image',dst)
cv2.imshow('image2',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('smallpig.jpg')
blur = cv2.blur(img,(5,5))
cv2.imshow('blur',blur)
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('smallpig.jpg')
blur = cv2.GaussianBlur(img,(5,5),0)
cv2.imshow('blur',blur)
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('smallpig.jpg')
median = cv2.medianBlur(img,5)
cv2.imshow('median',median)
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('smallpig.jpg')
blur = cv2.bilateralFilter(img,9,75,75)
cv2.imshow('blur',blur)
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
import cv2
import numpy as np
def motion_blur(image, degree=20, angle=20):
image = np.array(image)
M = cv2.getRotationMatrix2D((degree/2, degree/2), angle, 1)
motion_blur_kernel = np.diag(np.ones(degree))
motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M, (degree, degree))
motion_blur_kernel = motion_blur_kernel / degree
blurred = cv2.filter2D(image, -1, motion_blur_kernel)
cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX)
blurred = np.array(blurred, dtype=np.uint8)
return blurred
img = cv2.imread('smallpig.jpg')
dst = motion_blur(img)
cv2.imshow('dst',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
import cv2
import numpy as np
def gaussian_noise(image, degree=None):
row, col, ch = image.shape
mean = 0
if not degree:
var = np.random.uniform(0.004, 0.01)
else:
var = degree
sigma = var ** 0.5
gauss = np.random.normal(mean, sigma, (row, col, ch))
gauss = gauss.reshape(row, col, ch)
noisy = image + gauss
cv2.normalize(noisy, noisy, 0, 255, norm_type=cv2.NORM_MINMAX)
noisy = np.array(noisy, dtype=np.uint8)
return noisy
img = cv2.imread('smallpig.jpg')
dst = gaussian_noise(img,5000)
cv2.imshow('dst',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()