hdu 3613 Best Reward(manacher)

本文介绍了一道算法题目,核心在于如何通过最优切割一串由26种不同宝石组成的项链来获得最大价值。文章详细解释了问题背景、解决思路及Manacher算法的应用,并提供了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Best Reward

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 3215    Accepted Submission(s): 1324


Problem Description
After an uphill battle, General Li won a great victory. Now the head of state decide to reward him with honor and treasures for his great exploit.

One of these treasures is a necklace made up of 26 different kinds of gemstones, and the length of the necklace is n. (That is to say: n gemstones are stringed together to constitute this necklace, and each of these gemstones belongs to only one of the 26 kinds.)

In accordance with the classical view, a necklace is valuable if and only if it is a palindrome - the necklace looks the same in either direction. However, the necklace we mentioned above may not a palindrome at the beginning. So the head of state decide to cut the necklace into two part, and then give both of them to General Li.

All gemstones of the same kind has the same value (may be positive or negative because of their quality - some kinds are beautiful while some others may looks just like normal stones). A necklace that is palindrom has value equal to the sum of its gemstones' value. while a necklace that is not palindrom has value zero.

Now the problem is: how to cut the given necklace so that the sum of the two necklaces's value is greatest. Output this value.

 

Input
The first line of input is a single integer T (1 ≤ T ≤ 10) - the number of test cases. The description of these test cases follows.

For each test case, the first line is 26 integers: v 1, v 2, ..., v 26 (-100 ≤ v i ≤ 100, 1 ≤ i ≤ 26), represent the value of gemstones of each kind.

The second line of each test case is a string made up of charactor 'a' to 'z'. representing the necklace. Different charactor representing different kinds of gemstones, and the value of 'a' is v 1, the value of 'b' is v 2, ..., and so on. The length of the string is no more than 500000.

 

Output
Output a single Integer: the maximum value General Li can get from the necklace.
 

Sample Input
  
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 aba 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 acacac
 

Sample Output
  
1 6
 

Source

题意:

一串项链是由26个不同的宝石组成的,每个宝石有不同的价值。如果项链是回文串的话,那么它的价值就是项链上所有宝石加起来的价值,否则价值为0。现在要将项链分成两半,然后算出它最大能值多少。

思路:

用manacher跑一边,如果以该点为回文中心能到达最左端,那么把该回文长度的位置记录下来,说明该回文能够到达最左端。然后如果能到达最右端,依然把从右边数到左的回文长度的位置记录下来,说明该回文能够达到最右端。然后枚举所有点,看是否能满足以该点i出发能到达最左端并且i+1的回文串能够到达最右端。并且记录一下项链的最大值。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxn=1000050;
int N,maxr[maxn],v[27],sum[maxn];
int pre[maxn],pos[maxn];
char a[maxn],b[maxn];
void init()
{
    int i;
    for(i=0;a[i];i++)
    {
        b[i*2+1]='#';
        b[i*2+2]=a[i];
    }
    N=2*i+1;
    b[0]='$',b[N]=b[N+1]='#';
}
void solve(int len)
{
    int id,maxn=0;
    for(int i=1;i<=N;i++)
    {
        maxr[i]=i<maxn?min(maxn-i,maxr[2*id-i]):1;
        while(b[i+maxr[i]]==b[i-maxr[i]]) maxr[i]++;
        if(i+maxr[i]>maxn) maxn=i+maxr[i],id=i;
        if(i-maxr[i]==0)
        {
            pre[maxr[i]-1]=1;
        }
        if(i+maxr[i]==2*len+2)
        {
            pos[maxr[i]-1]=1;
        }
    }
    int maxsum=-inf,tmp=0;
    for(int i=1;i<len;i++)
    {
        if(pre[i])
        {
            tmp+=sum[i];
        }
        if(pos[len-i])
        {
            tmp+=sum[len]-sum[i];
        }
        if(tmp>maxsum)
            maxsum=tmp;
        tmp=0;
    }
    printf("%d\n",maxsum);
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        memset(pre,0,sizeof(pre));
        memset(pos,0,sizeof(pos));
        for(int i=0;i<26;i++)
            scanf("%d",&v[i]);
        scanf("%s",a);
        int len=strlen(a);
        sum[0]=0;
        for(int i=1;i<=len;i++)
            sum[i]=sum[i-1]+v[a[i-1]-'a'];
        init();
        solve(len);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值