PAT 1044 Shopping in Mars [二分法] [返回第一个大于等于x的数]

本文介绍了一种在火星购物中使用钻石链进行支付的算法。通过优化查找过程,实现了从钻石链上快速找到满足支付金额的钻石组合,采用二分查找降低时间复杂度至O(NlogN),并提供了完整代码实现。

Shopping in Mars is quite a different experience. The Mars people pay by chained diamonds. Each diamond has a value (in Mars dollars M$). When making the payment, the chain can be cut at any position for only once and some of the diamonds are taken off the chain one by one. Once a diamond is off the chain, it cannot be taken back. For example, if we have a chain of 8 diamonds with values M$3, 2, 1, 5, 4, 6, 8, 7, and we must pay M$15. We may have 3 options:

  1. Cut the chain between 4 and 6, and take off the diamonds from the position 1 to 5 (with values 3+2+1+5+4=15).
  2. Cut before 5 or after 6, and take off the diamonds from the position 4 to 6 (with values 5+4+6=15).
  3. Cut before 8, and take off the diamonds from the position 7 to 8 (with values 8+7=15).

Now given the chain of diamond values and the amount that a customer has to pay, you are supposed to list all the paying options for the customer.

If it is impossible to pay the exact amount, you must suggest solutions with minimum lost.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 numbers: N (≤10​5​​), the total number of diamonds on the chain, and M (≤10​8​​), the amount that the customer has to pay. Then the next line contains N positive numbers D​1​​⋯D​N​​ (D​i​​≤10​3​​ for all i=1,⋯,N) which are the values of the diamonds. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print i-j in a line for each pair of i ≤ j such that Di+ ... + Dj = M. Note that if there are more than one solution, all the solutions must be printed in increasing order of i.

If there is no solution, output i-j for pairs of i ≤ j such that Di + ... + Dj >M with (Di + ... + Dj −M) minimized. Again all the solutions must be printed in increasing order of i.

It is guaranteed that the total value of diamonds is sufficient to pay the given amount.

Sample Input 1:

16 15
3 2 1 5 4 6 8 7 16 10 15 11 9 12 14 13

Sample Output 1:

1-5
4-6
7-8
11-11

Sample Input 2:

5 13
2 4 5 7 9

Sample Output 2:

2-4
4-5

--------------------------------------这是题目和解题的分割线--------------------------------------

用循环遍历去相加判断的话会超时O(N^2)。题目涉及总和,可以开个数组专门记录从1-i的总和,这样数组是递增的,可以用二分法来查找右边的数,O(NlogN)。

#include<cstdio>
#include<algorithm>

using namespace std;

int n,pay,sum[100005] = {},i,j;

//查找第一个大于或者等于pay的数字的下标 
int searchQ(int x)
{
	int left = x,right = n; 
	while(left<right)
	{
		int mid = (left+right)/2;
		if(sum[mid]-sum[x-1]>=pay) right = mid; //大于或者等于 
		else left = mid + 1;
	}
	return left;
}

int main()
{
	
	scanf("%d%d",&n,&pay);
	for(i=1;i<=n;i++)
	{
		scanf("%d",&sum[i]);
		sum[i] += sum[i-1]; //记录从1到i的总和 
	}
	int flag = 0;
	for(i=1;i<=n;i++)
	{
		int j = searchQ(i);
		//i-j之间的数字的和 = sum[j]-sum[i-1] 
		if(sum[j]-sum[i-1]==pay)
		{
			printf("%d-%d\n",i,j);
			flag = 1;
		}
	}
	int minN = 100000005;
	//如果没有相等的,找最接近的 
	if(!flag)
	{
		for(i=1;i<=n;i++)
		{
			int j = searchQ(i);
			//从所有大于pay的总和里挑出最接近的,即最小的 
			if(sum[j]-sum[i-1]>pay) 
				minN = min(minN,sum[j]-sum[i-1]);
		}
		for(i=1;i<=n;i++)
		{
			int j = searchQ(i);
			if(sum[j]-sum[i-1]==minN) printf("%d-%d\n",i,j);
		}
	}	
}

 

下载方式:https://renmaiwang.cn/s/t0445 在时序发生器设计实验中,如何达成T4至T1的生成? 时序发生器的构建可以通过运用一个4位循环移位寄存器来达成T4至T1的输出。 具体而言:- **CLR(清除)**: 作为全局清零信号,当CLR呈现低电平状态时,所有输出(涵盖T1至T4)皆会被清除。 - **STOP**: 在T4脉冲的下降沿时刻,若STOP信号处于低电平状态,则T1至T4会被重置。 - **启动流程**: 当启动信号START处于高电平,并且STOP为高电平时,移位寄存器将在每个时钟的上升沿向左移动一位。 移位寄存器的输出端对应了T4、T3、T2、T1。 #### 2. 时序发生器如何调控T1至T4的波形形态? 时序发生器通过以下几个信号调控T1至T4的波形形态:- **CLR**: 当CLR处于低电平状态时,所有输出均会被清零。 - **STOP**: 若STOP信号为低电平,且在T4脉冲的下降沿时刻,所有输出同样会被清零。 - **START**: 在START信号有效(通常为高电平),并且STOP为高电平时,移位寄存器启动,从而产生环形脉冲输出。 ### 微程序控制器实验#### 3. 微程序控制器实验中的四条机器指令及其对应的微程序段指定的机器指令及其关联的微程序段如下:- **NOP**: 00- **R0->B**: 04- **A+B->R0**: 05- **P<1>**: 30- **IN->R0**: 32- **R0->OUT**: 33- **HLT**: 35#### 4. 微程序段中的微操作/微命令序列针对每条微指令,其对应的微操作或微命令序列如下:- **IN->R0**: 输入(IN)单元的据被...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值