AQS(AbstractQuenedSynchronizer抽象的队列式同步器)在java.util.concurrent.locks包,自旋锁、互斥锁、读锁写锁、条件产量、信号量、栅栏都是AQS的衍生物。AQS的核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程并将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制AQS是用CLH队列锁实现的,即将暂时获取不到锁的线程加入到队列中。
CLH队列是一个虚拟的双向队列,虚拟的双向队列即不存在队列实例,仅存在节点之间的关联关系。AQS是将每一条请求共享资源的线程封装成一个CLH锁队列的一个结点(Node),来实现锁的分配。
AQS就是基于CLH队列,用volatile修饰共享变量state,线程通过CAS去改变状态符,成功则获取锁成功,失败则进入等待队列,等待被唤醒。注意: AQS是自旋锁,在等待唤醒的时候,经常会使用自旋(while(!cas()))的方式,不停地尝试获取锁,直到被其他线程获取成功
AQS实现的具体方式如下:

AQS维护了一个volatile int state和一个FIFO线程等待队列,多线程争用资源被阻塞的时候就会进入这个队列。state就是共享资源,其访问方式有如下三种:
getState();setState();compareAndSetState();
AQS 定义了两种资源共享方式:
1.Exclusive:独占,只有一个线程能执行,如ReentrantLock
2.Share:共享,多个线程可以同时执行,如Semaphore、CountDownLatch、ReadWriteLock,CyclicBarrier
AQS底层使用了模板方法模式
JUC是基于AQS实现的,AQS是一个同步器,设计模式是模板模式。如果需要自定义同步器一般的方式是:
- 使用者继承AbstractQueuedSynchronizer并重写指定的方法。(这些重写方法很简单,无非是对于共享资源state的获取和释放)
- 将AQS组合在自定义同步组件的实现中,并调用其模板方法,而这些模板方法会调用使用者重写的方法
自定义同步器在实现的时候只需要实现共享资源state的获取和释放方式即可,至于具体线程等待队列的维护,AQS已经在顶层实现好了。自定义同步器实现的时候主要实现下面几种方法:
isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。
tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false。
tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false。
tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
tryReleaseShared(int):共享方式。尝试释放资源,如果释放后允许唤醒后续等待结点返回true,否则返回false。
ReentrantLock为例,(可重入独占式锁):state初始化为0,表示未锁定状态,A线程lock()时,会调用tryAcquire()独占锁并将state+1.之后其他线程再想tryAcquire的时候就会失败,直到A线程unlock()到state=0为止,其他线程才有机会获取该锁。A释放锁之前,自己也是可以重复获取此锁(state累加),这就是可重入的概念。
以CountDownLatch为例,任务分N个子线程去执行,state就初始化 为N,N个线程并行执行,每个线程执行完之后countDown()一次,state就会CAS减一。当N子线程全部执行完毕,state=0,会unpark()主调用线程,主调用线程就会从await()函数返回,继续之后的动作。
一般来说,自定义同步器要么是独占方法,要么是共享方式,它们也只需实现tryAcquire-tryRelease、tryAcquireShared-tryReleaseShared中的一种即可。但AQS也支持自定义同步器同时实现独占和共享两种方式,如ReentrantReadWriteLock。在acquire() acquireShared()两种方式下,线程在等待队列中都是忽略中断的,acquireInterruptibly()/acquireSharedInterruptibly()是支持响应中断的。
AQS的源码实现
依照acquire-release、acquireShared-releaseShared的次序来。
结点状态waitStatus
Node结点是对每一个等待获取资源的线程的封装,其包含了需要同步的线程本身及其等待状态,如是否被阻塞、是否等待唤醒、是否已经被取消等。变量waitStatus则表示当前Node结点的等待状态,共有5种取值CANCELLED、SIGNAL、CONDITION、PROPAGATE、0。
- CANCELLED(1):表示当前结点已取消调度。当timeout或被中断(响应中断的情况下),会触发变更为此状态,进入该状态后的结点将不会再变化
- SIGNAL(-1):表示后继结点在等待当前结点唤醒。后继结点入队时,会将前继结点的状态更新为SIGNAL
- CONDITION(-2):表示结点等待在Condition上,当其他线程调用了Condition的signal()方法后,CONDITION状态的结点将从等待队列转移到同步队列中,等待获取同步锁
- PROPAGATE(-3):共享模式下,前继结点不仅会唤醒其后继结点,同时也可能会唤醒后继的后继结点
- 0:新结点入队时的默认状态。
注意,负值表示结点处于有效等待状态,而正值表示结点已被取消。所以源码中很多地方用>0、<0来判断结点的状态是否正常。
acquire(int)
此方法是独占模式下线程获取共享资源的顶层入口。如果获取到资源,线程直接返回,否则进入等待队列,直到获取到资源为止,且整个过程忽略中断的影响。这也正是lock()的语义,当然不仅仅只限于lock()。获取到资源后,线程就可以去执行其临界区代码了。下面是acquire()的源码:
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
函数流程如下:
- tryAcquire()尝试直接去获取资源,如果成功则直接返回(这里体现了非公平锁,每个线程获取锁时会尝试直接抢占加塞一次,而CLH队列中可能还有别的线程在等待)
- addWaiter()将该线程加入等待队列的尾部,并标记为独占模式
- acquireQueued()使线程阻塞在等待队列中获取资源,一直获取到资源后才返回。如果在整个等待过程中被中断过,则返回true,否则返回false
- 如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断selfInterrupt(),将中断补上。
tryAcquire(int)
此方法尝试去获取独占资源。如果获取成功,则直接返回true,否则直接返回false。这也正是tryLock()的语义,还是那句话,当然不仅仅只限于tryLock()。如下是tryAcquire()的源码:
protected boolean tryAcquire(int arg) {
throw new UnsupportedOperationException();
}
AQS这里只定义了一个接口,具体资源的获取交由自定义同步器去实现了(通过state的get/set/CAS)。至于能不能重入,能不能加塞,那就看具体的自定义同步器怎么去设计了。
这里之所以没有定义成abstract,是因为独占模式下只用实现tryAcquire-tryRelease,而共享模式下只用实现tryAcquireShared-tryReleaseShared。
addWaiter(Node):此方法用于将当前线程加入到等待队列的队尾,并返回当前线程所在的结点。
enq(Node):此方法用于将node加入队尾。
acquireQueued(Node, int):通过tryAcquire()和addWaiter(),该线程获取资源失败,已经被放入等待队列尾部了。该线程进入等待状态休息,直到其他线程彻底释放资源后唤醒自己。
shouldParkAfterFailedAcquire(Node, Node):此方法主要用于检查状态。整个流程中,如果前驱结点的状态不是SIGNAL,那么就不能安心去休息,需要去找个安心的休息点,同时可以再尝试下看有没有机会轮到自己拿号。
parkAndCheckInterrupt():在acquireQueued()中调用parkAndCheckInterrupt()来挂起当前线程。调用LockSupport.park()方法。对于park():为了线程调度,在许可可用之前禁用当前线程。
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
acquireQueued(),总结下该函数的具体流程:
- 结点进入队尾后,检查状态,找到安全休息点
- 调用park()进入waiting状态,等待unpark()或interrupt()唤醒自己
- 被唤醒后,看自己是不是有资格能拿到号。如果拿到,head指向当前结点,并返回从入队到拿到号的整个过程中是否被中断过;如果没拿到,继续流程1。
acquire()的流程:
- 调用自定义同步器的tryAcquire()尝试直接去获取资源,如果成功则直接返回
- 没成功,则addWaiter()将该线程加入等待队列的尾部,并标记为独占模式
- acquireQueued()使线程在等待队列中休息,有机会时(轮到自己,会被unpark())会去尝试获取资源。获取到资源后才返回。如果在整个等待过程中被中断过,则返回true,否则返回false
- 如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断selfInterrupt(),将中断补上。
流程图如图所示:

release(int)
release()是独占模式下线程释放共享资源的顶层入口。它会释放指定量的资源,如果彻底释放了(即state=0),它会唤醒等待队列里的其他线程来获取资源。
它调用tryRelease()来释放资源,它是根据tryRelease()的返回值来判断该线程是否已经完成释放掉资源了。
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
tryRelease(int):此方法尝试去释放指定量的资源。跟tryAcquire()一样,这个方法是需要独占模式的自定义同步器去实现的。正常来说,tryRelease()都会成功的,因为这是独占模式,该线程来释放资源,那么它肯定已经拿到独占资源了,直接减掉相应量的资源即可(state-=arg),也不需要考虑线程安全的问题。但要注意它的返回值,release()是根据tryRelease()的返回值来判断该线程是否已经完成释放掉资源了!所以自义定同步器在实现时,如果已经彻底释放资源(state=0),要返回true,否则返回false。
在release方法中调用unparkSuccessor()来唤醒该线程的继任节点。在unparkSuccessor()方法中通过LockSupport.unpark()来唤醒。unpark():如果给定线程的许可尚不可用,则使其可用。
acquireShared(int)
此方法是共享模式下线程获取共享资源的顶层入口。它会获取指定量的资源,获取成功则直接返回,获取失败则进入等待队列,直到获取到资源为止,整个过程忽略中断。
tryAcquireShared()依然需要自定义同步器去实现。但是AQS已经把其返回值的语义定义好了:负值代表获取失败;0代表获取成功,但没有剩余资源;正数表示获取成功,还有剩余资源,其他线程还可以去获取。所以这里acquireShared()的流程就是:
- tryAcquireShared()尝试获取资源,成功则直接返回
- 失败则通过doAcquireShared()进入等待队列park(),直到被unpark()/interrupt()并成功获取到资源才返回。整个等待过程也是忽略中断的
其实跟acquire()的流程大同小异,只不过多了拿到资源后,还会去唤醒后继队友的操作。
releaseShared()
releaseShared()是共享模式下线程释放共享资源的顶层入口。它会释放指定量的资源,如果成功释放且允许唤醒等待线程,它会唤醒等待队列里的其他线程来获取资源。
此方法的流程:释放掉资源后,唤醒后继。跟独占模式下的release()相似,但独占模式下的tryRelease()在完全释放掉资源(state=0)后,才会返回true去唤醒其他线程,而共享模式下的releaseShared()则没有这种要求,共享模式实质就是控制一定量的线程并发执行,那么拥有资源的线程在释放掉部分资源时就可以唤醒后继等待结点。
LockSupport
LockSupport是用来创建锁和其他同步类的基本线程阻塞原语。每个使用LockSupport的线程都会与一个许可关联,如果该许可可用并且可在进程中使用,则调用park()将会立即返回,否则可能阻塞。如果许可尚不可用,则可以调用 unpark 使其可用。但是注意许可不可重入,也就是说只能调用一次park()方法,否则会一直阻塞。
LockSupport.park()、LockSupport.unpark()的作用分别是阻塞线程和解除阻塞线程,且park()和unpark()不会遇到“Thread.suspend ()和 Thread.resume所可能引发的死锁”问题。当然park()、unpark()是成对使用。
park():如果许可可用,则使用该许可,并且该调用立即返回;否则,为线程调度禁用当前线程,并在发生以下三种情况之一以前,使其处于休眠状态:
- 调用unpark方法,释放该线程的许可
- 该线程被中断
- 时间到期
unpark:如果给定线程的许可尚不可用,则使其可用。如果线程在 park 上受阻塞,则它将解除其阻塞状态。否则,保证下一次调用 park 不会受阻塞。如果给定线程尚未启动,则无法保证此操作有任何效果。
队列同步器是用来构建锁或者其他同步组件的基础框架,它使用了一个 int 类型的成员变量表示同步状态,通过内置的 FIFO 队列来完成资源获取线程的排队工作。
使用方式
同步器的主要使用方式是继承,子类通过继承同步器并实现它的抽象方法来管理同步状态,在抽象方法的实现过程中免不了要对同步状态进行更改,这时就需要使用同步器提供的3个方法 getState、setState 和 compareAndSetState 来进行操作,因为它们能够保证状态的改变是安全的。子类推荐被定义为自定义同步组件的静态内部类,同步器自身没有实现任何同步接口,它仅仅是定义了若干同步状态获取和释放的方法来供自定义同步组件使用,同步器既可以支持独占式地获取同步状态,也可以支持共享式地获取同步状态,这样就可以方便实现不同类型地同步组件。
和锁的关系
同步器是实现锁的关键,在锁的实现中聚合同步器,利用同步器实现锁的语义。锁是面向使用者的,它定义了使用者与锁交互的接口,隐藏了实现细节;同步器面向的是锁的实现者,它简化了锁的实现方式,屏蔽了同步状态管理、线程的排队、等待与唤醒等底层操作。锁和同步器很好地隔离了使用者和实现者所关注的领域。
同步队列
AQS 中每当有新的线程请求资源时,该线程都会进入一个等待队列,只有当持有锁的线程释放锁资源后该线程才能持有资源。等待队列通过双向链表实现,线程会被封装在链表的 Node 节点中,Node 的等待状态包括:CANCELLED 表示线程已取消、SIGNAL 表示线程需要唤醒、CONDITION 表示线程正在等待、PROPAGATE 表示后继节点会传播唤醒操作,只会在共享模式下起作用。
两种模式
独占模式表示锁会被一个线程占用,其他线程必须等到持有锁的线程释放锁后才能获取到锁继续执行,在同一时间内只能有一个线程获取到这个锁,ReentrantLock 就采用的是独占模式。共享模式表示多个线程获取同一个锁的时候有可能会成功,ReadLock 就采用的是共享模式。独占模式通过 acquire 和 release 方法获取和释放锁,共享模式通过 acquireShared 和 releaseShared 方法获取和释放锁。
独占式的获取和释放流程
在获取同步状态时,同步器调用 acquire 方法,维护一个同步队列,使用 tryAcquire 方法安全地获取线程同步状态,获取状态失败的线程会构造同步节点并通过 addWaiter 方法被加入到同步队列的尾部,并在队列中进行自旋。之后会调用 acquireQueued 方法使得该节点以死循环的方式获取同步状态,如果获取不到则阻塞节点中的线程,而被阻塞线程的唤醒主要依靠前驱节点的出队或阻塞节点被中断实现,移出队列或停止自旋的条件是前驱节点是头结点并且成功获取了同步状态。
在释放同步状态时,同步器调用 tryRelease 方法释放同步状态,然后调用 unparkSuccessor 方法(该方法使用 LockSupport 唤醒处于等待状态的线程)唤醒头节点的后继节点,进而使后继节点重新尝试获取同步状态。
只有当前驱节点是头节点时才能够尝试获取同步状态原因
头节点是成功获取到同步状态的节点,而头节点的线程释放同步状态之后,将会唤醒其后继节点,后继节点的线程被唤醒后需要检查自己的前驱节点是否是头节点。
维护同步队列的FIFO原则,节点和节点在循环检查的过程中基本不相互通信,而是简单地判断自己的前驱是否为头节点,这样就使得节点的释放规则符合FIFO,并且也便于对过早通知的处理(过早通知是指前驱节点不是头结点的线程由于中断而被唤醒)。
共享式的获取和释放流程
在获取同步状态时,同步器调用 acquireShared 方法,该方法调用 tryAcquireShared 方法尝试获取同步状态,返回值为 int 类型,当返回值大于等于 0 时表示能够获取到同步状态。因此在共享式获取锁的自旋过程中,成功获取到同步状态并退出自旋的条件就是该方法的返回值大于等于0。
释放同步状态时,调用 releaseShared 方法,释放同步状态后会唤醒后续处于等待状态的节点。对于能够支持多线程同时访问的并发组件,它和独占式的主要区别在于 tryReleaseShared 方法必须确保同步状态安全释放,一般通过循环和 CAS 来保证,因为释放同步状态的操作会同时来自多个线程。
170万+

被折叠的 条评论
为什么被折叠?



