NLP – 用Python进行自然语言处理 | NLP – Natural Language Processing with Python

本课程全面讲解使用Python进行自然语言处理,包括处理文本和PDF文件,正则表达式,Spacy的标记化和命名实体识别,SciKit-Learn的文本分类,主题建模,情感分析及构建聊天机器人。适合Python开发者学习。

学习使用机器学习、Spacy、NLTK、SciKit-Learn、深度学习等进行自然语言处理

你将会学到的

  • 学习使用 Python 处理文本文件

  • 了解如何在 Python 中处理 PDF 文件

  • 利用正则表达式在文本中进行模式搜索

  • 使用 Spacy 进行超快速标记化

  • 了解词干提取和词形还原

  • 了解词汇匹配与 Spacy

  • 使用词性标注自动处理原始文本文件

  • 了解命名实体识别

  • 使用 Spacy 可视化 POS 和 NER

  • 使用 SciKit-Learn 进行文本分类

  • 使用 Latent Dirichlet Allocation 进行主题建模

  • 了解非负矩阵分解

  • 使用 Word2Vec 算法

  • 使用 NLTK 进行情感分析

  • 使用深度学习构建您自己的聊天机器人

要求

  • 了解通用Python

  • 有权将 python 包安装到计算机上

  • 网络连接

说明

欢迎来到互联网上最好的自然语言处理课程!本课程旨在成为您学习如何将自然语言处理与 Python 编程语言结合使用的完整在线资源。

在本课程中,我们将涵盖您成为世界一流的 Python NLP 从业者所需学习的一切。

我们将从基础开始,学习如何使用 Python 打开和处理文本和 PDF 文件,以及学习如何使用正则表达式在文本文件中搜索自定义模式。

之后,我们将从自然语言处理的基础知识开始,利用 Python 的自然语言工具包库,以及用于超快速标记化、解析、实体识别和文本词形还原的最先进的 Spacy 库。

我们将了解基本的 NLP 概念,例如词干提取、词形还原、停用词、短语匹配、分词等等!

接下来我们将介绍词性标注,您的 Python 脚本将能够自动将文本中的单词分配给它们适当的词性,例如名词、动词和形容词,这是构建智能语言系统的重要部分。

我们还将学习命名实体识别,让您的代码通过提供文本信息自动理解金钱、时间、公司、产品等概念。

通过最先进的可视化库,我们将能够实时查看这些关系。

然后,我们将继续了解使用 Scikit-Learn 进行的机器学习以进行文本分类,例如自动构建机器学习系统来确定正面与负面电影评论,或垃圾邮件与合法电子邮件。

我们会将这些知识扩展到更复杂的自然语言处理无监督学习方法,例如主题建模,我们的机器学习模型将从原始文本文件中检测主题和主要概念。

本课程甚至涵盖高级主题,例如使用 NLTK 库对文本进行情感分析,以及使用 Word2Vec 算法创建语义词向量。

本课程包括一个完整的部分,专门介绍最先进的高级主题,例如使用深度学习构建我们自己的聊天机器人!

您不仅可以通过本课程获得精彩的技术内容,还可以访问我们与课程相关的问答论坛以及我们的实时学生聊天频道,这样您就可以与其他学生合作完成项目,或者获得我和课程助教对课程内容的帮助。

所有这些都附带 30 天退款保证,因此您可以无风险地尝试课程。

你在等什么?立即成为自然语言处理专家!

我会在课程中见到你,

何塞

此课程面向哪些人:

  • 有兴趣学习如何使用自然语言处理的 Python 开发人员。
Python Natural Language Processing by Jalaj Thanaki English | 31 July 2017 | ISBN: 1787121429 | ASIN: B072B8YWCJ | 486 Pages | AZW3 | 11.02 MB Key Features Implement Machine Learning and Deep Learning techniques for efficient natural language processing Get started with NLTK and implement NLP in your applications with ease Understand and interpret human languages with the power of text analysis via Python Book Description This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them. During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis. You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data. By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world. What you will learn Focus on Python programming paradigms, which are used to develop NLP applications Understand corpus analysis and different types of data attribute. Learn NLP using Python libraries such as NLTK, Polyglot,
Mastering Natural Language Processing with Python by Deepti Chopra, Nisheeth Joshi, Iti Mathur 2016 | ISBN: 1783989041 | English | 238 pages Maximize your NLP capabilities while creating amazing NLP projects in Python About This Book Learn to implement various NLP tasks in Python Gain insights into the current and budding research topics of NLP This is a comprehensive step-by-step guide to help students and researchers create their own projects based on real-life applications Who This Book Is For This book is for intermediate level developers in NLP with a reasonable knowledge level and understanding of Python. What You Will Learn Implement string matching algorithms and normalization techniques Implement statistical language modeling techniques Get an insight into developing a stemmer, lemmatizer, morphological analyzer, and morphological generator Develop a search engine and implement POS tagging concepts and statistical modeling concepts involving the n gram approach Familiarize yourself with concepts such as the Treebank construct, CFG construction, the CYK Chart Parsing algorithm, and the Earley Chart Parsing algorithm Develop an NER-based system and understand and apply the concepts of sentiment analysis Understand and implement the concepts of Information Retrieval and text summarization Develop a Discourse Analysis System and Anaphora Resolution based system In Detail Natural Language Processing is one of the fields of computational linguistics and artificial intelligence that is concerned with human-computer interaction. It provides a seamless interaction between computers and human beings and gives computers the ability to understand human speech with the help of machine learning. This book will give you expertise on how to employ various NLP tasks in Python, giving you an insight into the best practices when designing and building NLP-based applications using Python. It will help you become an expert in no time and assist you in creating your own NLP projects using NLTK. You will sequentially be guided through applying machine learning tools to develop various models. We'll give you clarity on how to create training data and how to implement major NLP applications such as Named Entity Recognition, Question Answering System, Discourse Analysis, Transliteration, Word Sense disambiguation, Information Retrieval, Sentiment Analysis, Text Summarization, and Anaphora Resolution. Style and approach This is an easy-to-follow guide, full of hands-on examples of real-world tasks. Each topic is explained and placed in context, and for the more inquisitive, there are more details of the concepts used.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值