1、损失函数的使用(L1loss):
import torch
from torch.nn import L1Loss, MSELoss, CrossEntropyLoss
inputs = torch.tensor([1,2,3], dtype=torch.float32)
targets = torch.tensor([1,2,5], dtype=torch.float32)
inputs = torch.reshape(inputs, (1,1,1,3))
targets = torch.reshape(targets, (1,1,1,3))
loss = L1Loss()
result = loss(inputs, targets)
结果如下:
2、损失函数的使用(MSE):
loss_mse = MSELoss()
result_mse = loss_mse(inputs, targets)
print(result_mse)
结果如下:
3、损失函数的使用(CrossRntropy):
x = torch.tensor([0.1, 0.2, 0.3])
y = torch.tensor([1])
x = torch.reshape(x, (1, 3))
loss_cross = CrossEntropyLoss()
result_cross = loss_cross(x, y)
print(result_cross)
结果如下:
4、损失函数与神经网络的结合:
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear, CrossEntropyLoss
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("dataset",train=False, transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=1)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2, stride=1),
MaxPool2d(kernel_size=2),
Conv2d(32, 32, kernel_size=5, padding=2, stride=1),
MaxPool2d(kernel_size=2),
Conv2d(32, 64, kernel_size=5, padding=2, stride=1),
MaxPool2d(kernel_size=2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
loss = CrossEntropyLoss()
tudui = Tudui()
for data in dataloader:
imgs, targets = data
outputs = tudui(imgs)
# print(outputs)
# print(targets)
result_loss = loss(outputs, targets)
result_loss.backward()
print()
loss() 计算完损失之后,使用result_loss.backward() 计算grad,为后续更新网络的使用。