1、CIFAR10 model的结构:
2、定义网络:
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.conv1 = Conv2d(3, 32, 5, stride=1, padding=2)
self.maxpool1 = MaxPool2d(kernel_size=2)
self.conv2 = Conv2d(32, 32, kernel_size=5, padding=2, stride=1)
self.maxpool2 = MaxPool2d(kernel_size=2)
self.conv3 = Conv2d(32, 64, kernel_size=5, padding=2, stride=1)
self.maxpool3 = MaxPool2d(kernel_size=2)
self.flatten = Flatten()
self.linear1 = Linear(1024, 64)
self.linear2 = Linear(64, 10)
def forward(self, x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.linear2(x)
return x
运行结果如下:
3、检查网络:
input = torch.ones((64, 3, 32, 32))
output = tudui(input)
print(output.shape)
结果如下:
4、改用Sequential定义网络:
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2, stride=1),
MaxPool2d(kernel_size=2),
Conv2d(32, 32, kernel_size=5, padding=2, stride=1),
MaxPool2d(kernel_size=2),
Conv2d(32, 64, kernel_size=5, padding=2, stride=1),
MaxPool2d(kernel_size=2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
5、tensorboard显示网络情况:
writer = SummaryWriter('logs_sequential')
writer.add_graph(tudui, input)
writer.close()
结果如下: