题目
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allowa node to be a descendant of itself).”
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5
For example, the lowest common ancestor (LCA) of nodes 2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition.
题意
给定一个二叉搜索树,给定两个结点(在二叉搜索树种),找到他们的最近公共祖先。
(比如,在上面的图中,结点2,和结点8的最近公共祖先(LCA)是6 . )
(比如,结点2,4的LCA是2,因为根据LCA定义,一个结点可以是自己的祖先)
分析及解答
方法1:
(数轴)
- 【重要规则】这里对位置进行了划分,最近的公共祖先一定是在下图中间部分(p <= tgt <= q ,其中p < q),否则则需要继续深入查找。
- 【问题】如何证明?
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
// root 是二叉查找树。
if (root == null)
return null;
if (root.val > Math.max(p.val, q.val)) {
TreeNode r = lowestCommonAncestor(root.left, p, q);
return r;
} else if (root.val < Math.min(p.val, q.val)) {
TreeNode l = lowestCommonAncestor(root.right, p, q);
return l;
}
return root;
}