洛谷会t一个点…
想法很简单..
就是说按照后缀数组一般处理得方法,把所有串接在一起,然后暴力看哪些串有连在一起。
c++代码如下:
#include<bits/stdc++.h>
#define rep(i,x,y) for(register int i = x ;i <= y;++ i)
#define repd(i,x,y) for(register int i = x; i >= y ;-- i)
using namespace std;
typedef long long ll;
template<typename T>inline void read(T&x)
{
x = 0;char c;int sign = 1;
do { c = getchar(); if(c == '-') sign = -1; }while(!isdigit(c));
do { x = x * 10 + c - '0'; c = getchar(); }while(isdigit(c));
x *= sign;
}
const int N = 6e5+500;
int n,m,len,O = 2e5+50;
int belong[N],s[N],sa[N],rk[N],h[N],buc[N],x[N],y[N];
int vis[N],id[N],le[N],ans[N];
inline void get_SA()
{
int m = N - 500;
rep(i,1,len) ++buc[x[i] = s[i]];
rep(i,1,m) buc[i] += buc[i - 1];
repd(i,len,1) sa[buc[s[i]]--] = i;
for(int k = 1; k <= len;k <<= 1)
{
int p = 0;
repd(i,len,len - k + 1) y[++p] = i;
rep(i,1,len) if(sa[i] > k) y[++p] = sa[i] - k;
rep(i,1,m) buc[i] = 0;
rep(i,1,len) ++buc[x[i]];
rep(i,1,m) buc[i] += buc[i - 1];
repd(i,len,1) sa[buc[x[y[i]]]--] = y[i];
swap(x,y); p = 1;
x[sa[1]] = 1;
rep(i,2,len)
if(y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k])
x[sa[i]] = p;
else x[sa[i]] = ++p;
if(p > len) break;
m = p;
}
int p = 0;
rep(i,1,len) rk[sa[i]] = i;
rep(i,1,len)
{
if(rk[i] == 1) continue;
int t = sa[rk[i] - 1];
while(t + p <= len && i + p <= len && s[i + p] == s[t + p]) ++p;
h[rk[i]] = p;
p = max(0,p - 1);
}
}
int main()
{
read(n); read(m);
rep(i,1,n)
{
int L ;
read(L);
rep(j,len + 1,len + L)
{
read(s[j]);
belong[j] = i;
}
len += L + 1;
s[len] = ++ O;
read(L);
rep(j,len + 1,len + L)
{
read(s[j]);
belong[j] = i;
}
len += L + 1;
s[len] = ++ O;
}
rep(i,1,m)
{
id[i] = len + 1;
read(le[i]);
rep(j,len + 1,len + le[i])
read(s[j]);
len += le[i] + 1;
s[len] = ++ O;
}
get_SA();
rep(i,1,m)
{
int x = rk[id[i]],num = 0;
while(h[x] >= le[i] && x > 1)
{
if(vis[belong[sa[x - 1]]] != i && belong[sa[x - 1]])
++num,++ans[belong[sa[x - 1]]],vis[belong[sa[x - 1]]] = i;
--x;
}
x = rk[id[i]] + 1;
while(h[x] >= le[i] && x <= len)
{
if(vis[belong[sa[x]]] != i && belong[sa[x]])
++num,++ans[belong[sa[x]]],vis[belong[sa[x]]] = i;
++x;
}
printf("%d\n",num);
}
rep(i,1,n) printf("%d ",ans[i]);
return 0;
}