在这个时代的每一天,无论是个人处理账单,还是企业处理合同、保险单、发票、报告或成堆的简历,我们都深陷在海量的非结构化数据之中。这类数据不像整齐排列的数据库表格那样规整,它们形态各异、格式自由,信息“藏”在复杂的文本、表格和布局里。
根据《福布斯》技术委员会的预测,企业数据中,非结构化数据占比能达到 80%。这产生了一个重大问题:数据量巨大,却难以被大模型直接理解、分析和有效利用。
因此为了提升大模型的文档理解能力,文档预处理成为至关重要的前置步骤。而文档预处理的核心就是文档解析,将文档中非结构化数据结构成结构化数据,帮助大模型更好的阅读和思考。
文档解析的作用
文档解析能够直接切入企业运营效率的核心问题之一——非结构化数据处理的低效与高成本,其优势主要体现在两个核心维度:
- 显著提升效率,减少人工成本:它能自动化处理原本依赖人工完成的数据提取任务,例如从发票中抓取供应商信息和金额,从合同中识别关键条款日期。这不仅大幅缩短处理周期,更能让团队从繁琐劳动中解放出来,专注于更具创造性和战略性的工作,直接降低运营成本。
- 提高数据准确性:人工录入数据,尤其在处理大量、复杂的文档时,极易出错。文档解析技术通过标准化、程序化的提取流程,能有效规避人为疏忽导致的错漏,提升数据准确性。这对于财务对账、合规审计、客户信息管理等对数据精度要求极高的场景至关重要。