(简单贪心)Bin Packing

本文探讨了一种特定条件下的物品装箱问题:在一维空间内将不同长度的物品放入固定大小的箱子中,每个箱子最多只能放置两个物品且总长度不超过箱子的容量。文章提出了一种基于贪心算法的解决方案,并给出了示例输入输出及实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A set of n 1-dimensional items have to be packed in identical bins. All bins have exactly the same length l and each item i has length li<=l . We look for a minimal number of bins q such that
  • each bin contains at most 2 items,
  • each item is packed in one of the q bins,
  • the sum of the lengths of the items packed in a bin does not exceed l .

You are requested, given the integer values n , l , l1 , ..., ln , to compute the optimal number of bins q .
Input
The first line of the input contains the number of items n (1<=n<=10 5) . The second line contains one integer that corresponds to the bin length l<=10000 . We then have n lines containing one integer value that represents the length of the items.
Output
Your program has to write the minimal number of bins required to pack all items.
Sample Input
10
80
70
15
30
35
10
80
20
35
10
30
Sample Output
6
Hint
The sample instance and an optimal solution is shown in the figure below. Items are numbered from 1 to 10 according to the input order. 

思路:贪心

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#include<iostream>
int n,l;
int a[100010];
int main()
{
        cin>>n>>l;
        for(int i=0;i<n;++i)
            cin>>a[i];
        sort(a,a+n);
        int sum=0;
        int len=0;
        int temp=n-1;
        for(int i=0;i<n;i++)
         if(a[i]>0)
         {
             if(a[i]<l)
                {
                    for(int j=temp;j>i;--j)
                    {
                        if(a[j]>0&&a[j]+a[i]<=l)
                            {
                                a[j]=-1;
                                temp--;
                                break;
                            }
                    }
                }
            a[i]=-1;
            sum++;
         }
        printf("%d\n",sum);
}











评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值